Document Type : Review Paper

Authors

1 Department of Microbiology and Parasitology, College of Veterinary Medicine, University of Basrah, Iraq

2 Department of Pathology and Poultry Diseases, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq.

3 Unit of Zoonotic Diseases, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq

10.29079/qjvms.2021.179341

Abstract

The current article has been planned to provide highlights on the immune response and itsprotective role in chickens under natural field infection of M. gallisepticum MG that cause tovigorous inflammation in the trachea, lungs, and air sacs. This article will converge on the host immune response to Mycoplasma gallisepticuminfection, also will be clarify a brief illustration of antigenic structure of Mycoplasma spp., andbasic immunological interactions between MG and the host that include innate immunity,adaptive immunity (humoral and cellular immune response), finally will discuss the mostcommon serological tests. Mycoplasma gallisepticum is tenuous living microorganism and the smallest one, canreproduce autonomously, cause world famed disease known as chronic respiratory disease forchicken that led to increased mortality, increased mortality, losing weight and negatively affectsbreeder flocks performance, in addition to the importance of the vertical transmission andprevailing among bird types, thereby it regarded as one of the most worldwide expensive poultrypathogens. Depending on the antigenic structure, and pathogenicity, Mycoplasmas are located invariable clusters, these two features affect the relation between Mycoplasmas and immunesystem, and because the chronic process of infection it may indicate that all immune componentsare involved in the disease pathogenesis as well as pathogenicity Primary confrontation of invading organisms occurs via natural or innate immunity withconsiderable resistance and participates in minimizing the infection progress although theadaptive immunity is critical in both sides as it contributes or has a role in the controlling theinfection alongside with contrast role in the immunopathogenesis. In conclusion the relationship between Mycoplasma gallisepticum and host immune responseis controlled by several factors that elucidated in the present article, which complicate thismutual interaction, thereby the clinical manifestation of MG infection could be differed and theprognosis may be variable.

Keywords

  1. Razin S, Herrmann Molecular biology and pathogenicity of mycoplasmas. New York, NY: Kluwer Academic/Plenum; 2002.https://doi.org/10.1007/b113360
  2. Levisohn S, Kleven SH. Avian mycoplasmosis (M. gallisepticum). Rev Sci           2000;19(2).https://doi.org/10.20506/rst.19.2.1232
  3. Quinn PJ, Carter ME, Markey B, Carter GR. The In: Clinical Veterinary Microbiology. Mosby; 2002. p. 320-326.
  4. Raviv Z, Ley Mycoplasma gallisepticum infection. In: Diseases of Poultry. Swayne DE, Glisson JR, McDougald LR, Nolan LK, Suarez DL, Nair VL, editors. Wiley-Blackwell; 2013. p. 877-893.
  5. Ramadan      Mycoplasma    gallisepticum overview in poultry. Am J Biomed Sci Res. 2019;4(5):354- 355.https://doi.org/10.34297/AJBSR.2019.04.000 833
  6. Ley DH. Mycoplasma gallisepticum infection. In: Diseases of Poultry. Saif YM, Barnes HJ, Fadly AM, Glisson JR, McDougald LR, Swayne DE, 11th ed. Iowa State University Press; 2003. p. 730.
  7. Javed MA, Frasca S Jr, Rood D, Cecchini K, Gladd M, Geary SJ, et al. Correlates of immune protection in chickens vaccinated with Mycoplasma gallisepticum strain GT5 following challenge with pathogenic M. gallisepticum strain R(low). Infect 2005;73(9):5410-9.https://doi.org/10.1128/IAI.73.9.5410-5419.2005
  1. Wijesurendra DS, Kanci A, Tivendale KA, Devlin JM, Wawegama NK, Bacci B, et Immune responses to vaccination and infection with Mycoplasma gallisepticum in turkeys. Avian Pathol.   2017;46(5):464- 73.https://doi.org/10.1080/03079457.2017.1311 990
  2. Levisohn S, Rosengarten R, Yogev D. In vivo variation of M. gallisepticum antigen expression in experimentally infected Vet Microbiol. 1995;45:219-31.https://doi.org/10.1016/0378- 1135(95)00039-D
  1. Bencina Haemagglutinins of pathogenic avian       mycoplasmas.      Avian     Pathol. 2002;31(6):535- 47.https://doi.org/10.1080/03079450210000245 26
  2. Lam Chemotaxis in Mycoplasma gallisepticum. Avian Dis. 2005;49(1):152- 4.https://doi.org/10.1637/7232-070604R
  3. Browning GF, Marenda MS, Markham PF, Noormohammadi AH, Whithear Pathogenesis of bacterial infections in animals. In: Gyles CL, Prescott JF, Songer JG, Thoen CO, editors. 4th ed. Blackwell Publishing; 2010. p. 549-65.https://doi.org/10.1002/9780470958209.ch29
  1. Stipkovits L, Kempf Mycoplasmoses in poultry. Rev Sci Tech. 1996;15(4):1495- 525.https://doi.org/10.20506/rst.15.4.986
  2. Forrester CA, Bradbury JM, Dare CM, Domangue RJ, Windsor H, Tasker JB, et Mycoplasma gallisepticum in pheasants and the efficacy of tylvalosin to treat the disease. Avian Pathol.   2011;40(6):581-6.https://doi.org/10.1080/03079457.2011.618822
  1. Razin S, Yogev D, Naot Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol         Rev. 1998;62(4):1094- 156.https://doi.org/10.1128/MMBR.62.4.1094- 1156.1998
  2. Jan G, Brenner C, Wroblewski Purification of M. gallisepticum membrane proteins p52, p67 (pMGA), and p77 by high performance liquid chromatography. Protein Expr Purif. 1996;7:160- 6.https://doi.org/10.1006/prep.1996.0023
  3. Miyata M. Gliding motility of mycoplasmas: The mechanism cannot be explained by current In: Blanchard A, Browning G, editors. Mycoplasmas Molecular Biology Pathogenicity and Strategies for Control. Horizon Bioscience; 2005. p. 137-63.
  1. Markham PF, Glew MD, Whithear KG, Walker Molecular cloning of a member of the gene family that encodes pMGA, a hemagglutinin of Mycoplasma gallisepticum. Infect     Immun. 1993;61(3):903- 9.https://doi.org/10.1128/iai.61.3.903-909.1993
  2. Yogev D, Menaker D, Strutzberg K, Levisohn S, Kirchhoff H, Hinz KH, et A surface epitope undergoing high-frequency phase variation is shared by   Mycoplasma         gallisepticum        and Mycoplasma                  bovis. Infect     Immun. 1994;62(11):4962- 8.https://doi.org/10.1128/iai.62.11.4962- 4968.1994
  3. Papazisi L, Gorton TS, Kutish G, Markham PF, Browning GF, Nguyen DK, et al. The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain R(low). 2003;149(Pt         9):2307- 16.https://doi.org/10.1099/mic.0.26427-0
  4. Boguslavsky S, Menaker D, Lysnyansky I, Liu T, Levisohn S, Rosengarten R, et Molecular characterization of the M. gallisepticum pvpA gene which               encodes           a              putative variable cytadhesin protein. Infect Immun. 2000;68:3956- 64.https://doi.org/10.1128/IAI.68.7.3956- 3964.2000
  5. Levisohn S, Rosengarten R, Yogev In vivo variation of Mycoplasma gallisepticum antigen expression in experimentally infected chickens. Vet Microbiol.              1995;45(2-3):219- 31.https://doi.org/10.1016/0378-1135(95)00039- D
  6. Goh MS, Gorton TS, Forsyth MH, Troy KE, Geary SJ. Molecular and biochemical analysis of a 105 kDa Mycoplasma gallisepticum cytadhesin (GapA). 1998;144(Pt 11):2971- 8.https://doi.org/10.1099/00221287-144-11-2971
  7. Hnatow LL, Keeler CL, Tessmer LL, Czymmek K, Dohms Characterization of MG C2, a Mycoplasma gallisepticum                 cytadhesin     with homology to the Mycoplasma pneumoniae 30- kilodalton    protein   P30         and Mycoplasma genitalium P32. Infect Immun. 1998;66:3436- 42.https://doi.org/10.1128/IAI.66.7.3436- 3442.1998
  8. Mudahi-Orenstein S, Levisohn S, Geary SJ, Yogev Cyt-adherence-deficient mutants of Mycoplasma gallisepticum generated by transposon mutagenesis. Infect Immun. 2003;71:3812-20.https://doi.org/10.1128/IAI.71.7.3812-3820.2003
  9. Winner F, Markova I, Much P, Lugmair A, Siebert-Gulle K, Vogl G, et Phenotypic switching in M. gallisepticum hemadsorption is governed by a high-frequency, reversible point mutation. Infect     Immun. 2003;71:1265- 73.https://doi.org/10.1128/IAI.71.3.1265- 1273.2003
  10. Papazisi L, Silbart LK, Frasca S, Rood D, Liao X, Gladd M, et
  11. A modified live Mycoplasma gallisepticum vaccine to protect chickens from respiratory disease. Vaccine. 2002;20(31-32):3709- 19.https://doi.org/10.1016/S0264- 410X(02)00372-9
  12. Papazisi L, Frasca S, Liao X, Yogev D, Geary GapA and CrmA co-expression is essential for Mycoplasma gallisepticum cytadherence and virulence. Infect     Immun. 2002;70:6839- 45.https://doi.org/10.1128/IAI.70.12.6839- 6845.2002
  13. Szczepanek SM, Frasca S, Schumacher VL, Liao X, Padula M, Djordjevic SP, et Identification of lipoprotein MslA as a neoteric virulence factor of Mycoplasma gallisepticum. Infect Immun. 2010;78:3475- 83.https://doi.org/10.1128/IAI.00154-10
  14. Jenkins C, Samudrala R, Geary SJ, Djordjevic Structural and functional characterization of an organic hydroperoxide resistance protein from Mycoplasma gallisepticum. J Bacteriol. 2008;190:2206- 16.https://doi.org/10.1128/JB.01685-07
  15. Baseggio N, Glew MD, Markham PF, Whithear KG, Browning Size and genomic location of the pMGA multigene family of Mycoplasma gallisepticum. Microbiology. 1996;142:1429- 35.https://doi.org/10.1099/13500872-142-6- 1429
  16. Vasconcelos AT, Ferreira HB, Bizarro CV, Bonatto SL, Carvalho MO, Pinto Swine and poultry pathogens, the complete genome sequences of two strains of M. hyopneumoniae and a strain of M. synoviae. J Bacteriol. 2005;187:5568- 77.https://doi.org/10.1128/JB.187.16.5568- 5577.2005
  17. Glew MD, Baseggio N, Markham PF, Browning GF, Walker ID. Expression of the pMGA genes of Mycoplasma gallisepticum is controlled by variation in the GAA trinucleotide repeat lengths within the 5' noncoding Infect Immun.1998;66(12):5833-41.https://doi.org/10.1128/IAI.66.12.5833-5841.1998
  1. Glew MD, Browning GF, Markham PF, Walker pMGA phenotypic variation in Mycoplasma gallisepticum occurs in vivo and is mediated by trinucleotide repeat length variation. Infect Immun. 2000;68(10):6027- 33.https://doi.org/10.1128/IAI.68.10.6027- 6033.2000
  2. Noormohammadi AH, Jones JE, Underwood G, Whithear KG. Poor systemic antibody response after vaccination of commercial broiler breeders with Mycoplasma gallisepticum vaccine ts-11 not associated with susceptibility to challenge. Avian 2002;46(3):623-8.https://doi.org/10.1637/0005- 2086(2002)046[0623:PSARAV]2.0.CO;2
  1. Cizelj I, Berčič RL, Dušanić D, Narat M, Kos J, Dovč P, et Mycoplasma gallisepticum and Mycoplasma synoviae express a cysteine protease CysP, which can cleave chicken IgG into Fab and Fc. Microbiology. 2011;157(Pt 2):362-72.https://doi.org/10.1099/mic.0.045641-0
  2. May M, Papazisi L, Gorton TS, Geary Identification of fibronectin binding proteins in Mycoplasma gallisepticum strain R. Infect Immun.                                2006;74:1777-85.https://doi.org/10.1128/IAI.74.3.1777-1785.2006
  1. Chen H, Yu S, Shen X, et The Mycoplasma gallisepticum alpha-enolase is cell surface- exposed and mediates adherence by binding to chicken plasminogen. Microb   Pathog. 2011;51:285- 90.https://doi.org/10.1016/j.micpath.2011.03.012
  2. Ferguson-Noel N, Noormohammadi Diseases of poultry. 13th ed. Ames, IA: Blackwell-Wiley Publishing; 2013. p. 900-6.
  3. Bercic RL, Slavec B, Lavric M, et al. A survey of avian mycoplasma species for neuraminidase enzymatic activity. Vet Microbiol. 2008;130:391- https://doi.org/10.1016/j.vetmic.2008.02.004
  4. May M, Szczepanek SM, Frasca S Jr, et Effects of sialidase knockout and complementation on virulence of Mycoplasma gallisepticum. Vet Microbiol. 2012;157:91- 5.https://doi.org/10.1016/j.vetmic.2011.12.004
  5. Zhang W, Liu Y, Zhang Q, et al. Mycoplasma gallisepticum infection impaired the structural integrity and immune function of bursa of Fabricius in chicken: implication of oxidative stress and Front Vet Sci. 2020;7:225.https://doi.org/10.3389/fvets.2020.00225
  1. Masukagami Y, Tivendale KA, Mardani K, et The Mycoplasma gallisepticum virulence factor lipoprotein MslA is              a                       novel polynucleotide binding protein. Infect Immun. 2013;81:3220- 6.https://doi.org/10.1128/IAI.00365-13
  2. Tseng CW, Kanci A, Citti C, et MalF is essential for           persistence            of                            Mycoplasma gallisepticum         in        vivo.        Microbiology. 2013;159:1459- 70.https://doi.org/10.1099/mic.0.067553-0
  3. Bencina D, Dusanic Demonstration of Mycoplasma gallisepticum in tracheas of healthy carrier chickens by fluorescent-antibody procedure and the significance of certain serologic tests in estimating antibody response. Avian          Dis.  1984;28:574- 8.https://doi.org/10.2307/1590226
  4. Majumder S, Silbart Interaction of Mycoplasma gallisepticum with chicken tracheal epithelial cells contributes to macrophage chemotaxis and activation. Infect Immun.   2015;84(1):266-74.https://doi.org/10.1128/IAI.01113-15
  1. Winner F, Rosengarten R, Citti In vitro cell invasion of Mycoplasma gallisepticum. Infect Immun. 2000;68(7):4238- 44.https://doi.org/10.1128/IAI.68.7.4238- 4244.2000
  2. Much P, Winner F, Stipkovits L, Rosengarten R, Citti C. M. gallisepticum: influence of cell invasiveness on the outcome of experimental infection in FEMS Immunol Med Microbiol. 2002;34:181-6.https://doi.org/10.1111/j.1574- 695X.2002.tb00622.x
  1. Lam KM. Morphologic changes in chicken cells after in vitro exposure to Mycoplasma Avian Dis. 2004;48(3):488- 93.https://doi.org/10.1637/7131
  2. Vogl G, Plaickner A, Szathmary S, Stipkovits L, Rosengarten R, Szostak Mycoplasma gallisepticum invades chicken erythrocytes during infection. Infect Immun. 2008;76(1):71- 7.https://doi.org/10.1128/IAI.00871-07
  3. Jordan JL, Chang HY, Balish M, Holt FL, Bose SR, Hasselbring BM, et Protein P200 is dispensable for Mycoplasma pneumoniae hemadsorption but not gliding motility or colonization of differentiated bronchial epithelium. Infect Immun. 2007;75(1):518- 22.https://doi.org/10.1128/IAI.01344-06
  4. Majumder  S,    Zappulla    F,    Silbart Mycoplasma gallisepticum lipid associated membrane proteins up-regulate inflammatory genes in chicken tracheal epithelial cells via TLR-2 ligation through an NF-κB dependent pathway. PLoS One.2014;9(11):e112796.https://doi.org/10.1371/journ al.pone.0112796
  1. Ruuth E, Praz Interactions between mycoplasmas and the immune system. Immunol Rev. 1989;112(1):133-60.https://doi.org/10.1111/j.1600- 065X.1989.tb00556.x
  1. Simecka JW, Ross SE, Cassell GH, Davis JK. Interactions of mycoplasmas with B cells: antibody production and nonspecific effects. Clin Infect 1993;17 Suppl 1:S176- 82.https://doi.org/10.1093/clinids/17.Supplement_1.S176
  2. Cartner SC, Lindsey JR, Gibbs-Erwin J, Cassell GH, Simecka Roles of innate and adaptive immunity in respiratory mycoplasmosis. Infect Immun. 1998;66(8):3485- 91.https://doi.org/10.1128/IAI.66.8.3485- 3491.1998
  3. Lam KM. The macrophage inflammatory protein- 1beta in the supernatants of Mycoplasma gallisepticum infected chicken leukocytes attract the migration       of             chicken  heterophils            and                  Dev          Comp           Immunol. 2002;26(1).https://doi.org/10.1016/S0145- 305X(01)00053-2
  4. Lam KM, DaMassa Chemotactic response of lymphocytes in chicken embryos infected with Mycoplasma gallisepticum. J Comp Pathol. 2003;128(1):33- 9.https://doi.org/10.1053/jcpa.2002.0602
  5. Mohammed J, Frasca S Jr, Cecchini K, Rood D, Nyaoke AC, Geary SJ, et Chemokine and cytokine gene expression profiles in chickens inoculated with   Mycoplasma        gallisepticum strains             Rlow                       or GT5.               Vaccine. 2007;25(51):8611- 21.https://doi.org/10.1016/j.vaccine.2007.09.057
  6. Razin S, Jacobs E. Mycoplasma adhesion. J Gen 1992;138(3):407- 22.https://doi.org/10.1099/00221287-138-3-407
  7. Razin S. Adherence of pathogenic mycoplasmas to host Biosci Rep. 1999;19(5):367- 72.https://doi.org/10.1023/A:1020204020545
  8. Hickman-Davis JM. Role of innate immunity in respiratory Mycoplasma infection. Front Biosci. 2002;7:1347-55.https://doi.org/10.2741/A845
  9. Majumder Role of Mycoplasma gallisepticum and host airway epithelial cell interaction in inflammation. [Doctoral Dissertation]. University of Connecticut Graduate School; 2014.
  10. Citti C, Kim MF, Wise Elongated versions of Vlp surface lipoproteins protect Mycoplasma hyorhinis escape variants                   from                 growth inhibiting           host        antibodies.            Infect     Immun. 1997;65:1773- 85.https://doi.org/10.1128/iai.65.5.1773- 1785.1997
  11. Chambaud I, Wróblewski H, Blanchard Interactions between mycoplasma lipoproteins and the host immune system. Trends Microbiol. 1999;7(12):493- 9.https://doi.org/10.1016/S0966- 842X(99)01641-8
  12. Goret J, Le Roy C, Touati A, Mesureur J, Renaudin H, Claverol S, et Surface lipoproteome of Mycoplasma hominis PG21 and differential expression after contact with human dendritic cells.       Future    Microbiol. 2016;11(2):179- 94.https://doi.org/10.2217/fmb.15.130
  13. You XX, Zeng YH, Wu Interactions between mycoplasma lipid-associated membrane proteins and the host cells. J Zhejiang Univ Sci B. 2006;7(5):342- 50.https://doi.org/10.1631/jzus.2006.B0342
  14. Takeuchi O, Akira Pattern recognition receptors        and         inflammation.      Cell. 2010;140(6):805- 20.https://doi.org/10.1016/j.cell.2010.01.022
  15. Roh JS, Sohn Damage-associated molecular patterns in inflammatory diseases. Immune Netw.2018;18(4):e27.https://doi.org/10.4110/in.2018.18.e27
  1. Agier J, Pastwińska J, Brzezińska-Błaszczyk E. An overview of mast cell pattern recognition Inflamm Res. 2018;67(9):737- 46.https://doi.org/10.1007/s00011-018-1164-5
  2. Xu X, Zhang D, Lyubynska N, Wolters PJ, Killeen P, Baluk P. Mast cells protect mice from Mycoplasma Am J Respir Crit Care Med.              2006;173:219- 25.https://doi.org/10.1164/rccm.200507- 1034OC
  3. Neerukonda SN, Katneni Avian pattern recognition receptor sensing and signaling. Vet Sci. 2020;7(1):14.https://doi.org/10.3390/vetsci7010 014
  4. belitz   D,   Medzhitov      Innate immunity: cross-talk   with   adaptive immunity through pattern recognition receptors and cytokines. Curr Opin                   Immunol.     2007;19(1):1- 3.https://doi.org/10.1016/j.coi.2006.11.018
  5. Browning GF, Citti Mollicutes: Molecular Biology and   Pathogenesis. Caister Academic Press; 2014.
  6. Kumar   H,   Kawai   T,   Akira    Pathogen recognition by the innate immune system. Int Rev Immunol.   2011;30:16-34.https://doi.org/10.3109/08830185.2010.529976
  1. Rharbaoui F, Westendorf A, Link C, Felk S, Buer J, Gunzer  The Mycoplasma-derived macrophage activating 2-kilodalton lipopeptide triggers global immune activation on nasal mucosa-associated    lymphoid     tissues. Infect Immun.                                                               2004;72:6978-86.https://doi.org/10.1128/IAI.72.12.6978-6986.2004
  2. Woolard MD, Hudig D, Tabor L, Ivey JA, Simecka NK cells in gamma interferon deficient mice suppress lung innate immunity against  Mycoplasma    spp.   Infect     Immun. 2005;73:6742- 51.https://doi.org/10.1128/IAI.73.10.6742- 6751.2005
  3. Harmon BG. Avian heterophils in inflammation and disease Poult Sci. 1998;77(7):972- 7.https://doi.org/10.1093/ps/77.7.972
  4. Webster AD, Furr PM, Hughes-Jones NC, Gorick BD, Taylor-Robinson D. Critical dependence on antibody for defence against Clin Exp Immunol. 1988;71(3):383-7.
  5. Bronte V, Zanovello Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol.      2005;5(8):641-54.https://doi.org/10.1038/nri1668
  6. Gaunson JE, Philip CJ, Whithear KG, Browning GF. The cellular immune response in the tracheal mucosa to Mycoplasma       gallisepticum      in vaccinated   and   unvaccinated   chickens   in   the acute  and  chronic  stages  of  diseas  Vaccine. 2006;24(14):2627- 33.https://doi.org/10.1016/j.vaccine.2005.12.008
  7. Gaunson JE, Philip CJ, Whithear KG, Browning GF.  Lymphocytic   infiltration   in   the   chicken trachea in response to Mycoplasma gallisepticum infection.   Microbiology.   2000;146(Pt   5):1223- 9.https://doorg/10.1099/00221287-146-5-1223
  8. Ganz  Defensins:  antimicrobial  peptides  of innate      immunity.      Nat      Rev       Immunol. 2003;3(9):710-20.https://doi.org/10.1038/nri1180
  9. Muneta Y, Panicker IS, Kanci A, Craick D, Noormohammadi AH, Bean Development and immunogenicity of recombinant M. gallisepticum vaccine strain ts-11 expressing chicken IFN-gamma.             Vaccine.              2008;26:5449- 54.https://doi.org/10.1016/j.vaccine.2008.07.07 6
  1. Shimizu     T,     Kida     Y,     Kuwano          A dipalmitoylated                                 lipoprotein                             from           M. pneumoniae activates NF-kappa B through TLR1,  TLR2,                    and         TLR6.    J                              Immunol. 2005;175(7):4641- 6.https://doi.org/10.4049/jimmunol.175.7.4641
  2. You XX, Zeng YH, Wu Interactions between Mycoplasma lipid-associated membrane proteins and the host cells. J Zhejiang Univ Sci B. 2006;7(5):342- 50.https://doi.org/10.1631/jzus.2006.B0342
  3. Oven I, Resman RK, Dusanic D, Bencina D, Keeler CL Jr, Narat Diacylated lipopeptide from M. synoviae mediates TLR15 induced innate immune responses. Vet          Res. 2013;44(1).https://doi.org/10.1186/1297-9716- 44-99
  4. Shimizu T, Kimura Y, Kida Y, Kuwano K, Tachibana M, Hashino M, et al. Cytadherence of pneumoniae induces inflammatory responses through autophagy and TollR 4. Infect Immun. 2014;82(7):3076- 86.https://doi.org/10.1128/IAI.01961-14
  5. Mariathasan S, Newton K, Monack D, Vucic D, French D, Lee W, et Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 2004;430(6996):213- 8.https://doi.org/10.1038/nature02664
  6. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev 2016;16(7):407- 20.https://doi.org/10.1038/nri.2016.58
  7. Into T, Okada K, Inoue N, Yasuda M, Shibata
  8. Extracellular ATP regulates cell death of lymphocytes and monocytes            induced  by membrane-bound lipoproteins of Mycoplasma fermentans and M. salivarium. Microbiol Immunol.                                  2002;46(10):667- 75.https://doi.org/10.1111/j.1348- 0421.2002.tb02750.x
  9. Into T, Fujita M, Okusawa T, Hasebe A, Morita M, Shibata K. Synergic effects of mycoplasmal lipopeptides and extracellular ATP on activation of Infect Immun. 2002;70(7):3586-91.https://doi.org/10.1128/IAI.70.7.3586-3591.2002
  1. Shimizu T, Kida Y, Kuwano Cytoadherence- dependent induction of inflammatory responses by M. pneumoniae.       Immunology. 2011;133(1):51- 61.https://doi.org/10.1111/j.1365- 2567.2011.03408.x
  2. Khare S, Dorfleutner A, Bryan NB, Yun C, Radian AD, de Almeida L, et An NLRP7- containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity. 2012;36(3):464- 76.https://doi.org/10.1016/j.immuni.2012.02.001
  3. Rubartelli DAMP-Mediated Activation of NLRP3-Inflammasome in Brain Sterile Inflammation, The Fine Line between Healing and Neuro-degeneration. Front Immunol. 2014;5:99.https://doi.org/10.3389/fimmu.2014.00 099
  4. Howard Variation in the susceptibility of bovine mycoplasmas to killing by the alternative complement pathway in bovine serum. Immunology. 1980;41(3):561-8.
  5. Howard CJ, Gourlay RN, Taylor Immunity to Mycoplasma bovis infections of the respiratory tract of calves. Res Vet Sci. 1980;28(2):242- 9.https://doi.org/10.1016/S0034-5288(18)32755- 3
  6. Day MJ, Schultz An Overview of the Immune System: Innate and Adaptive Immunity and the Inflammatory Response. In: Veterinary Immunology. 2nd ed. CRC Press; 2014. p. 1- 14.https://doi.org/10.1201/b16892-2
  7. Chen C, Li J, Zhang W, Shah SWA, Ishfaq Mycoplasma gallisepticum        triggers   immune damage in the chicken thymus by activating the TLR-2/MyD88/NF-κB signaling pathway and NLRP3               inflammasome.    Vet                     Res. 2020;51(1):52.https://doi.org/10.1186/s13567- 020-00777-x
  8. Rodriguez F, Sarradell J, Poveda JB, Ball HJ, Fernandez             Immunohistochemical characterization of lung lesions induced experimentally by M. agalactiae and M. bovis in goats. J Comp Pathol. 2000;123(4):285- 93.https://doi.org/10.1053/jcpa.2000.0418
  9. Blanchard A, Browning Mycoplasmas: Molecular Biology Pathogenicity and Strategies for Control. CRC Press; 2005.
  10. Jones HP, Tabor L, Sun X, Woolard MD, Simecka Depletion of CD8+ T cells exacerbates CD4+ Th cell associated inflammatory lesions during murine mycoplasma respiratory           disease. J Immunol. 2002;168(7):3493-501.https://doi.org/10.4049/jimmunol.168.7.349 3
  1. Evans RD, Hafez Evaluation of a Mycoplasma gallisepticum strain exhibiting reduced virulence for prevention and control of poultry Mycoplasmosis.           Avian     Dis. 1992;36(2):197- 201.https://doi.org/10.2307/1591490
  2. Gates AE, Frasca S, Nyaoke A, Gorton TS, Silbart LK, Geary SJ. Comparative assessment of a metabolically attenuated Mycoplasma gallisepticum mutant as a live vaccine for the prevention of avian respiratory mycoplasmosis. 2008;26(16):2010- 9.https://doi.org/10.1016/j.vaccine.2008.02.010
  3. Howard CJ, Stott EJ, Thomas LH, Gourlay RN, Taylor Protection against respiratory disease in calves induced by vaccines containing respiratory syncytial virus, parainfluenza type 3 virus, Mycoplasma bovis and M. dispar. Vet Rec. 1987;121(16):372- 6.https://doi.org/10.1136/vr.121.16.372
  4. Bencina D, Narat M, Bidovec A, Zorman-Rojs
  5. Transfer of maternal immunoglobulins and antibodies to Mycoplasma gallisepticum and Mycoplasma synoviae to the allantoic and amniotic fluid of chicken embryos. Avian Pathol. 2005;34(6):463-72.https://doi.org/10.1080/03079450500368011
  1. Cizelj JI, Bercic RL, Dusanic D, Bencina M, Narat M, Zorman-Rojs O, et Poultry infected with Mycoplasma gallisepticum or M. synoviae produce antibodies to their cysteine protease CysP. Acta       Agric       Slov.   2013;102(1):19- 27.https://doi.org/10.14720/aas.2013.102.1.149 03
  2. Reddy SK, Pratik S, Amer S, Newman JA, Singh P, Silim Lymphoproliferative responses of specific pathogen-free chickens to
  3. gallisepticum strain PG31. Avian Pathol. 1998;27:277- 83.https://doi.org/10.1080/03079459808419336
  4. Gaunson JE, Philip CJ, Whithear KG, Browning Age-related differences in the immune response to vaccination and infection with Mycoplasma      gallisepticum.    Vaccine. 2006;24(10):1687- 92.https://doi.org/10.1016/j.vaccine.2005.09.04 5
  5. Ganapathy K, Bradbury Effects of cyclosporine A on the immune responses and pathogenesis of a virulent strain of Mycoplasma gallisepticum      in      chickens.     Avian     Pathol. 2003;32:495-502.https://doi.org/10.1080/0307945031000154099
  1. Lam KM. Mycoplasma gallisepticum induced alterations in cytokine genes in chicken cells and Avian Dis. 2004;48:215- 9.https://doi.org/10.1637/7081
  2. Hawley DM, Fleischer Contrasting epidemic histories reveal pathogen mediated balancing selection on class II MHC diversity in wild songbirds.       PLoS          One. 2012;7:e30222.https://doi.org/10.1371/journal.po ne.0030222
  3. Gómez MI, Prince Airway epithelial cell signaling in response to bacterial pathogens. Pediatr Pulmonol.    2008;43(1):11- 9.https://doi.org/10.1002/ppul.20735
  4. Shimizu T, Kida Y, Kuwano Triacylated lipoproteins derived   from       M.                           pneumoniae activate nuclear factor-kappaB through toll-like receptors           1              and                         2.                             Immunology. 2007;121(4):473- 83.https://doi.org/10.1111/j.1365- 2567.2007.02594.x
  5. Lai WC, Bennett M, Pakes SP, Kumar V, Steutermann D, Owusu I, et Resistance to Mycoplasma pulmonis mediated by activated natural killer cells. J Infect     Dis. 1990;161(6):1269- 75.https://doi.org/10.1093/infdis/161.6.1269
  6. Kogut MH, Rothwell L, Kaiser P. IFN-gamma priming of chicken heterophils upregulates the expression of pro-inflammatory and Th1 cytokine mRNA following  receptor-mediated phagocytosis of S. enterica serovar enteritidis. J Interferon                       Cytokine                       2005;25(2):81.https://doi.org/10.1089/jir.2005.25.73
  1. Kobayashi T, Matsuoka K, Sheikh SZ, Elloumi HZ, Kamada N, Hisamatsu T, et NFIL3 is a regulator of IL-12 p40 in macrophages and mucosal immunity.          J              Immunol. 2011;186(8):4649- 55.https://doi.org/10.4049/jimmunol.1003888
  2. Duffield The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond). 2003;104(1):27- 38.https://doi.org/10.1042/cs1040027
  3. Mosser DM. The many faces of macrophage J Leukoc Biol. 2003;73(2):209- 12.https://doi.org/10.1189/jlb.0602325
  4. Manual of Diagnostic tests and Vaccines for Terrestrial Animals. Chapter 2.3.5; 2008. p.482-96.
  1. Kleven Antibody response to avian mycoplasmas. Am J Vet Res. 1975;36(4 Pt 2):563-5.
  2. Kleven Mycoplasmosis. In: Dufour- Zavala L, Swayne DE, Glisson JR, Pearson JE, Reed WM, Jackwood MW, Woolcock PR, editors. A laboratory manual for the isolation, identification and characterization of avian pathogens. 5th ed. American Association of Avian Pathologists; 2008. p. 59-64.
  3. Yoder HW Nonspecific reactions to Mycoplasma serum plate antigens induced by inactivated poultry disease vaccines. Avian Dis. 1989;33(1):60- 8.https://doi.org/10.2307/1591068
  4. Kleven SH, Morrow CJ, Whithear Comparison of            Mycoplasma        gallisepticum strains            by     hemagglutination-inhibition        and restriction endonuclease analysis. Avian Dis. 1988;32(4):731- 41.https://doi.org/10.2307/1590992
  5. Talkington FD, Kleven SH. A classification of laboratory strains of avian mycoplasma serotypes by direct immunofluorescence. Avian 1983;27(2):422-9.https://doi.org/10.2307/1590168
  1. Higgins PA, Whithear Detection and differentiation of Mycoplasma gallisepticum and M. synoviae antibodies in chicken serum using enzyme-linked immunosorbent assay. Avian Dis.         1986;30(1):160- 8.https://doi.org/10.2307/1590628
  2. Noormohammadi AH, Markham PF, Markham JF, Whithear KG, Browning Mycoplasma synoviae surface     protein       MSPB       as              a recombinant antigen in an indirect ELISA. Microbiology.              1999;145(Pt  8):2087- 94.https://doi.org/10.1099/13500872-145-8- 2087
  3. Noormohammadi AH, Browning GF, Cowling PJ, O'Rourke D, Whithear KG, Markham Detection of               antibodies to    Mycoplasma gallisepticum vaccine ts-11 by an autologous pMGA enzyme-linked immunosorbent assay. Avian                    Dis.                    2002;46(2):405- 11.https://doi.org/10.1637/0005- 2086(2002)046[0405:DOATMG]2.0.CO;2
  4. Noormohammadi AH, Browning GF, Jones J, Whithear KG. Improved detection of antibodies to Mycoplasma synoviae vaccine MS-H using an autologous recombinant MSPB enzyme- linked immunosorbent Avian Pathol. 2002;31(6):611-7.https://doi.org/10.1080/0307945021000024553
  1. Büyüktanir O, Yildirim T, Yakicier C, Genç O, Yurdusev N. A recombinant PvpA protein-based diagnostic prototype for rapid screening of chicken Mycoplasma gallisepticum Vet Microbiol.              2008;129(1-2):139- 49.https://doi.org/10.1016/j.vetmic.2007.11.028
  2. Abdelmoumen MB, Bejaoui AA, Oussaeif L, Mlik B, Amouna F. A recombinant antigen-based ELISA for the simultaneous differential serodiagnosis of Mycoplasma gallisepticum, Mycoplasma synoviae, and Mycoplasma meleagridis infections. Avian Dis. 2008;52:214- https://doi.org/10.1637/8071-071207-Reg.1