Document Type : Research Paper

Authors

1 AL-Hela veterinary hospital, Ministry of agriculture, Iraq

2 Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq

3 Department of Physiology, College of Medicine, University of Misan, Misan, Iraq

10.29079/qjvms.2025.155334.1049

Abstract

The E6 gene is encodes a minor oncoprotein that highly expressed in PV-infected host. Antibodies targeting E6 may have the potential to eliminate PV infection. This study focused on molecular and bioinformatics analysis of the E6 gene, encompassing identification of genetic variations, 3D structure prediction, and epitope prediction. 50 tumor samples were collected from cattle with papilloma like lesions from Al-Qadisiyah, province, Iraq. Samples submitted to PCR based on amplifying the complete E6 gene. Various bioinformatics tools were utilized to analyze physicochemical properties, tertiary structures of deduced protein, and predict immunodominant epitopes for B and T cells. 42 out of 50 (84%) cattle were found to be infected with BPV. Sequence analysis of ten samples identified BPV-1 as the predominant type in the region. Phylogenetic analysis revealed a close genetic relationship with Deltapapillomavirus 4. Genetic analysis identified seven single nucleotide polymorphisms (SNPs), including four synonymous mutations at nucleotides residues of 48,303, 210, 345, and three non-synonymous mutations (His38/Arg, Lys99/Gln, and Asp126/Asn). The E6 protein was found to contain at least four continuous B-cell epitopes and four T-cell epitopes, all of which exhibited strong immunogenicity and high sequence conservation.  The mutations are located within loop regions of the predicted structure. This study provides valuable insights into the molecular characteristics of the E6 gene of BPV circulating in Al-Qadisiyah, Iraq. The predicted B-cell and T-cell epitopes characterized by high immunogenicity and sequence conservation, offer promising targets for the development of diagnostic tests and potential vaccine candidates.

Keywords

1-Daudt C, Da Silva FRC, Lunardi M, Alves CBDT, Weber MN, Cibulski SP, Alfieri AF, Alfieri AA and Canal CW. Papillomaviruses in ruminants: An update. Transbound Emerg Dis. 2018;65:1381-1395. https://doi.org/10.1111/tbed.12868.
2-Coronado, P. L. G., Sáenz, C. I. R., Kawas, J. R., Triviño, D. G. Z., Zayas, Y. R., Krímskaya, S. E. S., ... & Molina, M. A. F. Design, synthesis, and evaluation of peptides derived from L1 protein against bovine papillomavirus-1/2 identified along Mexico’s cattle export route. Journal of Veterinary Research. 2023;67(1):11-21.‏DOI: https://doi.org/10.2478/jvetres-2023-0003.
3-Matias, B. F., Lunardi, M., Gonçalves, K. C., Vilas-Boas, L. A., Gustani-Buss, E., Bracarense, A. P. F., ... & Alfieri, A. A. Molecular detection by rolling circle amplification combined with deep sequencing of mixed infection by bovine papillomaviruses 2 and 4 in carcinoma in situ of the bovine esophageal mucosa. Viruses. 2024;16(10): 1558.‏doi: 10.3390/v16101558
4-Kaynarcalidan, O., & Oğuzoğlu, T. Ç. The oncogenic pathways of papillomaviruses. Veterinary and comparative oncology. 2021;19(1):7-16.‏ doi.org/10.1111/vco.12659.
5-Alcântara, B. K. D., Lunardi, M., Agnol, A. M. D., Alfieri, A. F., & Alfieri, A. A. Detection and quantification of the E6 Oncogene in bovine papillomavirus types 2 and 13 from urinary bladder lesions of cattle. Frontiers in Veterinary Science. 2021; (8):673189.‏ doi.org/10.3389/fvets.2021.673189.
6-Munday JS, Thomson NA, Luff JA.Papillomaviruses in dogs and cats. Vet J. 2017;225:23-31. doi.org/10.3390/pathogens13121057.
7-Campo MS, Graham SV, Cortese MS, Ashrafi GH. Araibi EH. Potential use of bovine papillomavirus proteins in the diagnosis and control of cattle cancers. Vet J. 2016; 215(7): 25-33.
8-Egawa N, Egawa K, Griffin H, Doorbar J. Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses. 2015;7(7):3863-3890. doi: 10.3390/v7072802.
9-Pyrek, P., Bednarski, M., Popiel, J., Siedlecka, M., & Karwańska, M. Genetic Evaluation of Bovine Papillomavirus Types Associated with Teat Papillomatosis in Polish Dairy Cattle with the Report of a New Putative Type. Pathogens.2023;12(11):1278.‏https://doi.org/10.3390/pathogens12111278
10-Santos, Lucas Alexandre Barbosa de Oliveira; Feitosa, Tales de Albuquerque Leite; Batista, Marcus Vinicius de Aragão. Comparative structural studies on Bovine papillomavirus E6 oncoproteins: Novel insights into viral infection and cell transformation from homology modeling and molecular dynamics simulations. Genetics and Molecular Biology, 2024;47(3): e20230346.‏https://doi.org/10.1590/1678-4685-GMB-2023-0346
11-Campo, M. S., Jarrett, W. F. H., O'neil, W., & Barron, R. J. Latent papillomavirus infection in cattle. Research in Veterinary Science. 1994; 56(2): 151-157.‏ https://doi.org/10.1016/0034-5288(94)90097-3
12-Taşatan, A., & Kale, M. Investigation of the Presence of Bovine Papillomavirus in Blood Leukocytes of Cattle in West Mediterranean of Turkey. Annual Research & Review in Biology. 2024; 39(2):53-62.‏ https://doi.org/10.9734/arrb/2024/v39i230632.
13-Geethanjali, P. V., Louis, L. E., Deepa, P. M., Vijayakumar, M., & Velavan, A. A comprehensive treatment strategy for bovine Papillomatosis: Assessing the synergistic effects of Autohaemotherapy, surgical intervention, and Autogenous vaccination. ‏ 2024; doi.org/10.22271/veterinary.2024.v9.i1Si.1084.
14-GS, H. A Combination of Chemotherapy and Autogenous Vaccine for Control of Bovine Papillomatosis in Cattle. International Journal of Bio-Resource & Stress Management. 2024;15(10), 10.23910/1.2024.5617.
15-Castro, L. R., Villalba-Viscaíno, V., Oviedo, Á., Zambrano, E., Dávila, A., Naranjo, G., ... & Villamizar, N. Case report: Diagnosis and autogenous vaccine treatment of herpesvirus in a green turtle (Chelonia mydas) in Santa Marta, Colombia. Frontiers in Veterinary Science. 2024; 11, 1258209. ‏doi.org/10.3389/fvets.2024.1258209.
16-Kant, S., Orta, Y. S., Kale, M., Yildirim, Y., Ozmen, O., Atli, K., & Saltik, H. S. Virological and Pathological Diagnosis of Canine Oral Papillomavirus in Dogs and Evaluation of Treatment Applications. Agricultural Science Digest, 2023; 43(4): 562-567.‏ DOI: 10.18805/ag.DF-526
17-Mihaylova, N. M., Manoylov, I. K., Nikolova, M. H., Prechl, J., & Tchorbanov, A. I. DNA and protein-generated chimeric molecules for delivery of influenza viral epitopes in mouse and humanized NSG transfer models. Human Vaccines &Immunotherapeutics.2024; 20(1):2292381.‏doi.org/10.1080/21645515.2023.2292381.
18-Haręża, D. A., Wilczyński, J. R., & Paradowska, E. Human papillomaviruses as infectious agents in gynecological cancers. Oncogenic properties of viral proteins. International journal of molecular sciences, 2022; 23(3):1818.‏ https://doi.org/10.3390/ijms23031818.
19-LIM, Jia Wen. Cellular and intraviral interaction partners of papillomavirus E6 protein. 2023. PhD Thesis. Universität Tübingen.‏
20-PIM, David; BANKS, Lawrence. Interaction of viral oncoproteins with cellular target molecules: infection with high‐risk vs low‐risk human papillomaviruses. Apmis, 2010;118(6‐7): 471-493.‏ doi.org/10.1111/j.1600-0463.2010.02618.x
21-Ashcroft, M., & Vousden, K. H. Regulation of p53 stability. Oncogene. 1999; 18(53): 7637-7643.‏ doi.org/10.1038/sj.onc.1203012.
22-Strati, K., & Lambert, P. F. Role of Rb-dependent and Rb-independent functions of papillomavirus E7 oncogene in head and neck cancer. Cancer research. 2007; 67(24):11585-11593.‏ doi.org/10.1158/0008-5472.CAN-07-3007.
23-Tomaić, V. Functional roles of E6 and E7 oncoproteins in HPV-induced malignancies at diverse anatomical sites. Cancers. 2016; 8(10):95.‏ doi.org/10.3390/cancers8100095.
24-Lima, E. G., Lira, R. C., Jesus, A. L. S., Dhalia, R., & Freitas, A. C. Development of a DNA-based vaccine strategy against bovine papillomavirus infection, involving the E5 or L2 gene. 2014, DOI 10.4238/2014.20.13
25-Schiller JT, Müller M. Next generation prophylactic human papillomavirus vaccines. Lancet Oncol. 2015;16(5):e217–25. doi: 10.1016/S1470-2045(14)71179-9 9.
26-Smalley Rumfield C, et al. Therapeutic vaccines for HPV-associated malignancies. ImmunoTargets Ther. 2020;167–200. doi: 10.2147/ITT.S273327 10. 
27-ZHOU, Kun, et al. HPV16 E6/E7-based mRNA vaccine is therapeutic in mice bearing aggressive HPV-positive lesions. Frontiers in Immunology. 2023; 14: 1213285.‏
28-Riley, R. R., Duensing, S., Brake, T., Munger, K., Lambert, P. F., & Arbeit, J. M. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer research. 2003;63(16):4862-4871.‏
29-Alsultan A, Walton G, Andrews SC, Clarke SR. Staphylococcus aureus FadB is a dehydrogenase that mediates cholate resistance and survival under human colonic conditions. Microbiology. 2013;22-169(3):001314.
30-Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution. 2021; 1;38(7):3022-7. https://doi.org/10.1093/molbev/msab120
31-Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular biology and evolution. 1993;1;10(3):512-26. https://doi.org/10.1093/oxfordjournals.molbev.a040023.
32-Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. Humana press; 2005. https://doi.org/10.1385/1-59259-890-0:571
33-Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v. 2—a server for in silico prediction of allergens. Journal of molecular modeling. 2014;20:1-6. doi.org/10.1007/s00894-014-2278-5.
34- Maurer-Stroh S, Krutz NL, Kern PS, Gunalan V, Nguyen MN, Limviphuvadh V, Eisenhaber F, Gerberick GF. AllerCatPro—prediction of protein allergenicity potential from the protein sequence. Bioinformatics. 2019;1;35(17):3020-7. doi.org/10.1093/bioinformatics/btz029.
35- Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. Protein–Sol: a web tool for predicting protein solubility from sequence. Bioinformatics. 2017;1;33(19):3098-100. doi.org/10.1093/bioinformatics/btx345.
36-Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nature methods. 2015;12(1):7-8. doi.org/10.1038/nmeth.3213.
37- Wolf M, Garcea RL, Grigorieff N, Harrison SC. Subunit interactions in bovine papillomavirus. Proceedings of the National Academy of Sciences. 2010;6;107(14):6298-303. doi: 10.1073/pnas.0914604107 .
38-Saha S, Raghava GP. Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins: Structure, Function, and Bioinformatics. 2006; 1;65(1):40-8. doi.org/10.1002/prot.21078.
39-Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome research. 2006;2:1-7. DOI: 10.1186/1745-7580-2-2
40-Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS computational biology. 2008;4;4(4):e1000048.doi:10.1371/journal.pcbi.1000048.
41-Doytchinova IA, Flower DR. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J. 2008;1(1):4.
42-Lunardi M, Claus MP, Alfieri AA, Fungaro MH, Alfieri AF.Phylogenetic position of an uncharacterized Brazilian strain of bovine papillomavirus in the genus Xipapillomavirus based on sequencing of the L1 open reading frame. Genet Mol Biol. 2010;33(4):745-9.
43-Bui HH, Sidney J, Li W, Fusseder N, Sette A. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC bioinformatics. 2007;8:1-6.DOI: 10.1186/1471-2105-8-361
44-Lee, Hee-Jung, Nuri Park, Hee-Jeong Cho, Jong Kwang Yoon, Nguyen Dinh Van, Yu-Kyoung Oh, and Young Bong Kim. Development of a novel viral DNA vaccine against human papillomavirus: AcHERV-HP16L1. Vaccine.  2010; 28(6): 1613-1619.
45-Yang, Andrew, Shiwen Peng, Emily Farmer, Qi Zeng, Max A. Cheng, Xiaowu Pang, T -C. Wu, and Chien-Fu Hung. Enhancing antitumor immunogenicity of HPV16-E7 DNA vaccine by fusing DNA encoding E7-antigenic peptide to DNA encoding capsid protein L1 of Bovine papillomavirus." Cell & Bioscience. 2017b; 7:1-10.
46-Boon, S. S., Tomaić, V., Thomas, M., Roberts, S., and Banks, L. Cancer- causing human papillomavirus E6 proteins display major differences in the phospho-regulation of their PDZ interactions. Journal of virology. 2015; 89(3):1579- 1586.
47-Baidya S, Das R, Kabir MG, Arifuzzaman M. Epitope design of L1 protein for vaccine production against Human Papilloma Virus types 16 and 18. Bioinformation. 2017;13(3):86.
48-Ata EB, Allam AM, Elbayoumy MK, Mahmoud MAE.Electron microscopy and phylogenetic analysis of Bovine papillomavirus infection in cattle from four Egyptian governorates. Trop Anim Health Prod.  2021;12;53(1):160.
49-Mansour KA. Clinical, histopathological and molecular detection of cutaneous papillomatosis associated with bovine papillomavirus types 1and 2 in cattle from Al-Qadissiyia province. Kufa Journal For Veterinary Medical Sciences. 2016; 10;7(1B):182-91. DOI: https://doi.org/10.36326/kjvs/2016/v7i1B4263.
50-Hamad MA, Al-Shammari AM, Odisho SM, Yaseen NY. Molecular and phylogenetic analysis of bovine papillomavirus type 1: first report in Iraqi cattle. Adv Virol 2016;1–7.
51-Al-Salihi KA, Al-Dabhawi AH, Ajeel AA, Erzuki IA, Ali TA. Clinico Histopathological and Immunohistochemical Study of Ruminant’s Cutaneous Papillomavirus in Iraq. Veterinary medicine international.2020; (1):5691974.
52-Cornut G, Gagnon S, Hankins C, Money D, Pourreaux K, Franco EL, Coutlée F.Canadian Women's HPV Study Group. Polymorphism of the capsid L1 gene of human papillomavirus types 31, 33, and 35. Journal of medical virology. 2010; 82(7):1168-78.
53-Gaukroger, J. M., L. M. Chandrachud, B. W. O’Neil, G. J. Grindlay, G. Knowles, and M. S. Campo.Vaccination of cattle with bovine papillomavirus type 4 L2 elicits the production of virus-neutralizing antibodies. Journal of general virology. 1996; 77: 1577-158.
54-El-Aliani A, El Abid H, Kassal Y, Khyatti M, Attaleb M, Ennaji MM, El Mzibri M. HPV16 L1 diversity and its potential impact on the vaccination-induced immunity. Gene. 2020;15(747):144682.
55-Yıldırım Y, Kale M, Özmen Ö, Çağırgan AA, Hasırcıoğlu S, Küçük A, Usta A, Sökel S. Phylogenetic analysis and searching bovine papillomaviruses in teat papillomatosis cases in cattle by performing histopathology, immunohistochemistry, and transmission electron microscopy. Microbial Pathogenesis. 2022; 1(170):105713.
56-Buck CB, Day PM, Trus BL.(2013). The papillomavirus major capsid protein L1. Virology. .1;445(1-2):169-74
57-Yang, Andrew, Emily Farmer, John Lin, T-C. Wu, and Chien-Fu Hung. The current state of therapeutic and T cell-based vaccines against human papillomaviruses." Virus research. 2017a; 231 :148-165.
58-Bauer, S., K. Heeg, H. Wagner, and G. B. Lipford. Identification of H-2Kb binding and immunogenic peptides from human papilloma virus tumour antigens E6 and E7. Scand. J. Immunol. 1995;42:317–323.
59-Peng S, Ji H, Trimble C, He L, Tsai YC, Yeatermeyer J, Boyd DA, Hung CF, Wu TC. Development of a DNA vaccine targeting human papillomavirus type 16 oncoprotein E6. Journal of virology. 2004;15;78(16):8468-76.
60-Frazer IH. Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol. 2004; 4(1):46–55. doi: 10.1038/nri1260.