Document Type : Review Paper
Authors
1 Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Al-Qadissiyah, Iraq
2 Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq
Abstract
The Peste des petits ruminant virus (PPRV) poses a significant threat to small ruminants, causing substantial economic losses in affected regions. The virus exhibits pleomorphic morphology and possesses a single-stranded, negative-sense RNA genome. Its structural proteins, including the nucleocapsid (N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin (H), and large (L) proteins, play crucial roles in viral replication, assembly, and immune evasion. The virus also encodes non-structural proteins, C and V, involved in modulating host immune responses. PPRV primarily infects sheep and goats, transmitting through respiratory aerosols and bodily fluids. The virus replicates in lymphoid tissues, leading to systemic spread and clinical manifestations such as fever, diarrhea, and pneumonia. The immune response to PPRV involves innate and adaptive components, with antibodies and T cells playing crucial roles in viral clearance. Various diagnostic techniques, including clinical examination, rapid tests, and laboratory assays, aid in PPRV detection and differentiation from other diseases. Control and prevention strategies encompass vaccination, quarantine, and biosecurity measures. Live-attenuated vaccines are widely used, but challenges persist, including heat stability and differentiation of infected from vaccinated animals. The development of thermotolerant and DIVA vaccines is crucial for effective PPR control. Ongoing research explores alternative vaccine approaches, such as subunit, vector, and nucleic acid, to enhance PPR prevention and contribute to global eradication efforts. The pursuit of innovative vaccine technologies and improved vaccination strategies holds promise for achieving the ambitious goal of eradicating PPR by 2030, safeguarding small ruminant populations and promoting food security in vulnerable regions.
Keywords
- Jones BA, Mahapatra M, Mdetele D, Keyyu J, Gakuya F, Eblate E, et al. Peste des petits ruminants virus infection at the wildlife-livestock interface in the greater serengeti ecosystem, 2015-2019. Viruses. 2021;13(5):2015-9.https://doi.org/10.3390/v13050838
- Vinayagamurthy B, Gurrappa Naidu G, Roy P. Peste Des Petits Ruminant Virus. In: Malik YS, Singh RK, Yadav MP, editors. Emerging and Transboundary Animal Viruses [Internet]. Singapore: Springer Singapore; 2020. p. 315-43. https://doi.org/10.1007/978-https://doi.org/10.1007/978-981-15-0402-0_13
- Balamurugan V, Hemadri D, Gajendragad MR, Singh RK, Rahman H. Diagnosis and control of peste des petits ruminants: a comprehensive review. VirusDisease. 2014;25(1):39-56.https://doi.org/10.1007/s13337-013-0188-2
- Coggon D. Epidemiological investigation of prognosis. Vol. 35, Scandinavian Journal of Work, Environment and Health. 2009. 282-283 p.https://doi.org/10.5271/sjweh.1338
- Alwan GF, Al Saad KM. Peste Des Petits Ruminants (PPR) of small ruminants in Iraq (A review). 2022;(July).
- Rojas JM, Pascual E, Wattegedera SR, Avia M, Santiago C, Martín V, et al. Hemagglutinin protein of Peste des Petits Ruminants virus (PPRV) activates the innate immune response via Toll-like receptor 2 signaling. Virulence [Internet]. 2021;12(1):690-703.https://doi.org/10.1080/21505594.2021.1882246
- Nambulli S, Sharp CR, Acciardo AS, Drexler JF, Duprex WP. Mapping the evolutionary trajectories of morbilliviruses: What, where and whither. Current Opinion in Virology [Internet]. 2016;16:95-105. Available from: http://dx.doi.org/10.1016/j.coviro.2016.01.019https://doi.org/10.1016/j.coviro.2016.01.019
- Rahman MM, Islam MS, Sabuj AAM, Hossain MG, Islam MA, Alam J, et al. Molecular Epidemiology and Phylogenetic Analysis of Peste des Petits Ruminants Virus Circulating in Sheep in Bangladesh. Transboundary and Emerging Diseases. 2023;2023:1-11.https://doi.org/10.1155/2023/1175689
- Zackaria H, Ishag A, Mohammed A, Terab A, Eltahir YM, Tigani E, et al. veterinary sciences A Clinical , Pathological , Epidemiological and Molecular Investigation of Recent Outbreaks of Peste des Petits Ruminants Virus in Domestic and Wild Small Ruminants in the Abu Dhabi Emirate , United Arab Emirates. 2023;1-15.
- Prajapati M, Alfred N, Dou Y, Yin X, Prajapati R, Li Y, et al. Host cellular receptors for the peste des petits ruminant virus. Viruses. 2019;11(8):1-19.https://doi.org/10.3390/v11080729
- Mantip SE, Shamaki D, Farougou S. Peste des petits ruminants in africa: Meta-analysis of the virus isolation in molecular epidemiology studies. Onderstepoort Journal of Veterinary Research. 2019;86(1):1-15.https://doi.org/10.4102/ojvr.v86i1.1677
- Chaiyasak S. Chula Digital Collections Epidemiological surveillance of feline morbillivirus infection in the aspects of polymerase chain reaction , indirect elisa and immunohistochemistry ASPECTS OF POLYMERASE CHAIN REACTION , INDIRECT ELISA AND Miss Surangkanang Chai. 2019;
- Kumar N, Maherchandani S, Kashyap S, Singh S, Sharma S, Chaubey K, et al. Peste Des Petits Ruminants Virus Infection of Small Ruminants: A Comprehensive Review. Viruses [Internet]. 2014 Jun 6;6(6):2287-327. Available from: https://www.mdpi.com/1999-4915/6/6/2287https://doi.org/10.3390/v6062287
- El Najjar F, Schmitt AP, Dutch RE. Paramyxovirus glycoprotein incorporation, assembly and budding: A three way dance for infectious particle production. Viruses. 2014;6(8):3019-54.https://doi.org/10.3390/v6083019
- WDejene O. Sero-Epidemiology and Spatial Distribution of Peste Des Petits Ruminants Virus Antibodies in Some Selected Pastoral Areas of Somali Regional State, Ethiopia. In 2016.
- Cg G, Kihu S, Sm M. Review of Peste Des Petits Ruminants in Sheep. J Vet Med Res. 2016;3(5).
- Niyokwishimira A, Dou Y, Qian B, Meera P, Zhang Z. Reverse Genetics for Peste des Petits Ruminants Virus: Current Status and Lessons to Learn from Other Non-segmented Negative-Sense RNA Viruses. Virologica Sinica [Internet]. 2018;33(6):472-83.https://doi.org/10.1007/s12250-018-0066-6
- Bailey D, Chard LS, Dash P, Barrett T, Banyard AC. Reverse genetics for peste-des-petits-ruminants virus (PPRV): Promoter and protein specificities. Virus Research. 2007 Jun 1;126(1-2):250-5.https://doi.org/10.1016/j.virusres.2007.01.015
- Turowski TW, Tollervey D. Transcription by RNA polymerase III: Insights into mechanism and regulation. Biochemical Society Transactions. 2016;44(5):1367-75.https://doi.org/10.1042/BST20160062
- Kinimi E, Mahapatra M, Kgotlele T, Makange MR, Tennakoon C, Njeumi F, et al. Complete genome sequencing of field isolates of peste des petits ruminants virus from tanzania revealed a high nucleotide identity with lineage III ppr viruses. Animals. 2021;11(10).https://doi.org/10.3390/ani11102976
- Bodjo SC, Lelenta M, Couacy-Hymann E, Kwiatek O, Albina E, Gargani D, et al. Mapping the Peste des Petits Ruminants virus nucleoprotein: Identification of two domains involved in protein self-association. Virus Research [Internet]. 2008;131(1):23-32. 024https://doi.org/10.1016/j.virusres.2007.08.005
- Mahapatra M, Selvaraj M, Parida S. Comparison of immunogenicity and protective efficacy of PPR live attenuated vaccines (Nigeria 75/1 and sungri 96) administered by intranasal and subcutaneous routes. Vaccines. 2020;8(2).https://doi.org/10.3390/vaccines8020168
- Rojas JM, Sevilla N, Martín V. PPRV-Induced Immunosuppression at the Interface of Virus-Host Interaction. British Journal of Virology. 2016;3(5):140-60.https://doi.org/10.17582/journal.bjv/2016.3.5.140.160
- Shahriari R, Khodakaram-Tafti A, Mohammadi A. Molecular characterization of Peste des Petits ruminants virus isolated from four outbreaks occurred in southern Iran. BMC Veterinary Research. 2019;15(1):1-6.https://doi.org/10.1186/s12917-019-1920-y
- Mahapatra M, Parida S, Egziabher BG, Diallo A, Barrett T. Sequence analysis of the phosphoprotein gene of peste des petits ruminants (PPR) virus: editing of the gene transcript. Virus Research [Internet]. 2003;96(1):85-98. Available from: https://www.sciencedirect.com/science/article/pii/S016817020300176Xhttps://doi.org/10.1016/S0168-1702(03)00176-X
- Alfred N, Qian B, Qin X, Yin X, Prajapati M, Dou Y, et al. Inhibition of eIF2α Phosphorylation by Peste des Petits Ruminant Virus Phosphoprotein Facilitates Viral Replication. Frontiers in Veterinary Science. 2021;8(July):1-14.https://doi.org/10.3389/fvets.2021.645571
- Li P, Zhu Z, Zhang X, Dang W, Li L, Du X, et al. The nucleoprotein and phosphoprotein of peste des petits ruminants virus inhibit interferons signaling by blocking the JAK-STAT Pathway. Viruses. 2019;11(7).https://doi.org/10.3390/v11070629
- Luka PD. Peste des Petits Ruminants Virus. Molecular Detection of Animal Viral Pathogens. 2015;I:467-76.
- Munir, M.m Zohari, S., Berg M. Molecular Biollogy and Pathogenesis of Peste des Petits Ruminents Virus. 2013.https://doi.org/10.1007/978-3-642-31451-3
- Tenuche OZ, Emikpe BO, Godwin E, Enem SI, Egwu GO. Peste Des Petits Ruminants: An Update. Microbiology Research Journal International. 2023;33(3):9-40.https://doi.org/10.9734/mrji/2023/v33i31369
- Muñoz-Alía MA, Russell SJ. Probing morbillivirus antisera neutralization using functional chimerism between measles virus and canine distemper virus envelope glycoproteins. Viruses. 2019;11(8):1-21.https://doi.org/10.3390/v11080688
- Hodgson S. The immune response to live, attenuated peste des petits ruminants virus vaccines. 2020;(January). Available from: https://openresearch.surrey.ac.uk/esploro/outputs/doctoral/The-immune-response-to-live-attenuated/99512868302346
- Seth S, Shaila MS. The Fusion Protein of Peste des Petits Ruminants Virus Mediates Biological Fusion in the Absence of Hemagglutinin-Neuraminidase Protein. Virology [Internet]. 2001;289(1):86-94. Available from: https://www.sciencedirect.com/science/article/pii/S0042682201911201https://doi.org/10.1006/viro.2001.1120
- Devireddy LR, Raghavan R, Ramachandran S, Shaila MS. The fusion protein of peste des petits ruminants virus is a hemolysin. Archives of Virology. 1999;144(6):1241-7.https://doi.org/10.1007/s007050050583
- Rojas JM, Rodríguez-Martín D, Avia M, Martín V, Sevilla N. Peste des petits ruminants virus fusion and hemagglutinin proteins trigger antibody-dependent cell-mediated cytotoxicity in infected cells. Frontiers in Immunology. 2019;10(JAN):1-11.https://doi.org/10.3389/fimmu.2018.03172
- Wolf MC, Freiberg AN, Zhang T, Akyol-ataman Z, Grock A, Hong PW. A broad-spectrum antiviral targeting entry of enveloped viruses. 2009;
- Gaur SK, Chaudhary Y, Jain J, Singh R, Kaul R. Structural and functional characterization of peste des petits ruminants virus coded hemagglutinin protein using various in-silico approaches. Frontiers in Microbiology. 2024;15(June):1-13.https://doi.org/10.3389/fmicb.2024.1427606
- Minet C, Yami M, Egzabhier B, Gil P, Tangy F, Brémont M, et al. Sequence analysis of the large (L) polymerase gene and trailer of the peste des petits ruminants virus vaccine strain Nigeria 75/1: Expression and use of the L protein in reverse genetics. Virus Research. 2009;145(1):9-17.https://doi.org/10.1016/j.virusres.2009.06.002
- Perez-Riba A, Synakewicz M, Itzhaki LS. Folding cooperativity and allosteric function in the tandem-repeat protein class. Philosophical Transactions of the Royal Society B: Biological Sciences. 2018;373(1749).https://doi.org/10.1098/rstb.2017.0188
- Choi KH. Viral polymerases. Advances in experimental medicine and biology. 2012;726:267-304.https://doi.org/10.1007/978-1-4614-0980-9_12
- Baron MD. The Molecular Biology of Peste des Petits Ruminants Virus. In: Munir M, editor. Peste des Petits Ruminants Virus [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 11-38. Available from: https://doi.org/10.1007/978-3-662-45165-6_2https://doi.org/10.1007/978-3-662-45165-6_2
- Linjie L, Xiaoling S, Xiaoxia M, Xin C, Ali A, Jialin B. Peste des petits ruminants virus non-structural C protein inhibits the induction of interferon-β by potentially interacting with MAVS and RIG-I. Virus Genes [Internet]. 2021;57(1):60-71. Available from: https://doi.org/10.1007/s11262-020-01811-yhttps://doi.org/10.1007/s11262-020-01811-y
- Wang H, Bi J, Feng N, Zhao Y, Wang T, Li Y, et al. Construction of Recombinant Rabies Virus Vectors Expressing H or F Protein of Peste des Petits Ruminants Virus. Veterinary Sciences. 2022;9(10):1-11.https://doi.org/10.3390/vetsci9100555
- Sourimant J, Plemper RK. Organization, function, and therapeutic targeting of the morbillivirus RNA-dependent RNA polymerase complex. Viruses. 2016;8(9):1-21.https://doi.org/10.3390/v8090251
- Rudra PG. Prevalence and molecular characterization of Peste Des Petits Ruminants ( PPR ) in Goat Pran Gopal Rudra. 2019.
- Kumar N, Barua S, Thachamvally R, Tripathi BN. Systems perspective of morbillivirus replication. Journal of Molecular Microbiology and Biotechnology. 2016;26(6):389-400.https://doi.org/10.1159/000448842
- Wang M, Wu J, Cao X, Xu L, Wu J, Ding H, et al. Developments in Negative-Strand RNA Virus Reverse Genetics. Microorganisms. 2024;12(3).https://doi.org/10.3390/microorganisms12030559
- Douglas J, Drummond AJ, Kingston RL. Evolutionary history of cotranscriptional editing in the paramyxoviral phosphoprotein gene. Virus Evolution. 2021;7(1):1-19.https://doi.org/10.1093/ve/veab028
- Munir M. Mononegaviruses of veterinary importance. Volume I: Pathobiology and molecular diagnosis. Mononegaviruses of veterinary importance. Volume I: Pathobiology and molecular diagnosis. 2013.https://doi.org/10.1079/9781780641799.0000
- Hu Q, Chen W, Huang K, Baron MD, Bu Z. Rescue of recombinant peste des petits ruminants virus: Creation of a GFP-expressing virus and application in rapid virus neutralization test. Veterinary Research. 2012;43(1):1-8.https://doi.org/10.1186/1297-9716-43-48
- Barrett T, Banyard AC, Diallo A. 3 - Molecular biology of the morbilliviruses. In: Barrett T, Pastoret PP, Taylor WP, editors. Rinderpest and Peste des Petits Ruminants [Internet]. Oxford: Academic Press; 2006. p. 31-IV. (Biology of Animal Infections). Available from: https://www.sciencedirect.com/science/article/pii/B9780120883851500332https://doi.org/10.1016/B978-012088385-1/50033-2
- Yelvita FS. No Titleהכי קשה לראות את מה שבאמת לנגד העינים. הארץ. 2022;(8.5.2017):2003-5.
- Benfield CTO, Legnardi M, Mayen F, Almajali A, Cinardi G, Wisser D, et al. Peste Des Petits Ruminants in the Middle East: Epidemiological Situation and Status of Control and Eradication Activities after the First Phase of the PPR Global Eradication Program (2017-2021). Animals. 2023;13(7).https://doi.org/10.3390/ani13071196
- Alwan GF, Al Saad KM. Investigation of the Clinical and Diagnostic Aspects of Peste des Petits Ruminants (PPR) in Sheep from the Southern Region of Iraq. Archives of Razi Institute. 2023;78(2):561-70.
- Kabir A, Kalhoro DH, Abro SH, Kalhoro MS, Yousafzai HA, Shams S, et al. Peste des petits ruminants : A review. 2019;8(2):1214-22.https://doi.org/10.19045/bspab.2019.80063
- Lembo T, Oura C, Parida S, Hoare R, Frost L, Fyumagwa R, et al. Peste des petits ruminants infection among cattle and wildlife in northern Tanzania. Emerging Infectious Diseases. 2013;19(12):2037-40.https://doi.org/10.3201/eid1912.130973
- Bamouh Z, Fakri F, Jazouli M, Safini N, Omari Tadlaoui K, Elharrak M. Peste des petits ruminants pathogenesis on experimental infected goats by the Moroccan 2015 isolate. BMC Veterinary Research. 2019;15(1):1-8.https://doi.org/10.1186/s12917-019-2164-6
- Mariner JC, Jones BA, Rich KM, Thevasagayam S, Anderson J, Jeggo M, et al. The Opportunity To Eradicate Peste des Petits Ruminants. The Journal of Immunology. 2016;196(9):3499-506.https://doi.org/10.4049/jimmunol.1502625
- Faculty V, Faculty V. Peste des Petits Ruminants virus virulence is associated with an early inflammatory profile in the tonsils and cell cycle arrest in lymphoid tissue Short title : PPRV. 2024;1-34.
- Begum S. A Sequential Study on the Pathology of Peste Des Petits Ruminants and Tissue Distribution of the Virus Following Experimental Infection of Black Bengal Goats. Frontiers in Veterinary Science. 2021;8(February).https://doi.org/10.3389/fvets.2021.635671
- Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nature Immunology. 2010;11(5):373-84.https://doi.org/10.1038/ni.1863
- Rozeff MS (1982). Scholar (24). 1982.
- Kircheis R, Planz O. The Role of Toll-like Receptors (TLRs) and Their Related Signaling Pathways in Viral Infection and Inflammation. International Journal of Molecular Sciences. 2023;24(7).https://doi.org/10.3390/ijms24076701
- Katze MG, He Y, Gale M. Viruses and interferon: A fight for supremacy. Nature Reviews Immunology. 2002;2(9):675-87.https://doi.org/10.1038/nri888
- Nour HSH. Challenges and Opportunities for Global Eradication of Paste des Petits Ruminants (PPR). Journal of Tropical Diseases and Public Health. 2020;8(4):1-10.
- Kervevan J, Chakrabarti LA. Role of cd4+ T cells in the control of viral infections: Recent advances and open questions. International Journal of Molecular Sciences. 2021;22(2):1-23.https://doi.org/10.3390/ijms22020523
- Sharma Y, Sarkar R, Jain A, Singh S, Shekhar C, Shanmugam C, et al. Modeling PPRV pathogenesis in mice to assess the contribution of innate cells and anti-viral T cells. bioRxiv [Internet]. 2020;2020.10.27.358309.https://doi.org/10.1101/2020.10.27.358309
- OIE. Peste des Petits Ruminants : Aetiology Epidemiology Diagnosis Prevention and Control References. OIE Technical Disease Cards. 2020;1-6.
- Jones BA, Mahapatra M, Chubwa C, Clarke B, Batten C, Hicks H, et al. Characterisation of peste des petits ruminants disease in pastoralist flocks in ngorongoro district of northern tanzania and bluetongue virus co-infection. Viruses. 2020;12(4).https://doi.org/10.3390/v12040389
- Kinimi E, Odongo S, Muyldermans S, Kock R, Misinzo G. Paradigm shift in the diagnosis of peste des petits ruminants: Scoping review. Acta Veterinaria Scandinavica [Internet]. 2020;62(1):1-14.https://doi.org/10.1186/s13028-020-0505-x
- Robi DT. Epidemiology of Peste Des Petits Ruminants in sheep and goats in Ethiopia. Ethiopia Acad Res J Agri Sci Res [Internet]. 2020;7(7):503-12.
- Raoof HS. Molecular characterization of circulating strains of the peste-des-petitis-ruminants virus in Sulaimani province, Iraq. Iraqi Journal of Veterinary Sciences. 2023;37(3):597-602.https://doi.org/10.33899/ijvs.2023.135044.2475
- Samad MA, Abu YM, Siddiky MNA, Giasuddin M, Sarker RN, Kumar AS, et al. SAARC Regional Training On Molecular Diagnosis and Laboratory Surveillance of PPR [Internet]. 2019. Available from: www.blri.gov.bd
- Luka PD, Ayebazibwe C, Shamaki D, Mwiine FN, Erume J. Sample type is vital for diagnosing infection with peste des petits ruminants virus by reverse transcription PCR. Journal of Veterinary Science. 2012;13(3):323-5.https://doi.org/10.4142/jvs.2012.13.3.323
- Dinçer E, Özkul A. Development of real-time reverse transcriptase-polymerase chain reaction (Rt rt- pcr) targeting four genes of peste des petits ruminants virus. Ankara Universitesi Veteriner Fakultesi Dergisi. 2015;62(4):283-7.https://doi.org/10.1501/Vetfak_0000002693
- Russian I. ANIMAL. 2019;54(6).
- Tully M, Batten C, Ashby M, Mahapatra M, Parekh K, Parida S, et al. The evaluation of five serological assays in determining seroconversion to peste des petits ruminants virus in typical and atypical hosts. Scientific Reports [Internet]. 2023;13(1):1-11. Available from: https://doi.org/10.1038/s41598-023-41630-3https://doi.org/10.1038/s41598-023-41630-3
- Macchi F, Rojas JM, Verna AE, Sevilla N, Franceschi V, Tebaldi G, et al. Bovine herpesvirus-4-based vector delivering Peste des Petits Ruminants Virus hemagglutinin ORF induces both neutralizing antibodies and cytotoxic T cell responses. Frontiers in Immunology. 2018;9(MAR):1-11.https://doi.org/10.3389/fimmu.2018.00421
- FAO OIE. Global control and eradication of peste des petits ruminants. Investing in Veterinary Systems, Food Security and Poverty Alleviation Rome: Food and Agriculture Organization of the United Nations. 2015;
- Abubakar M, Irfan M. Review Article. 2014;2:4-7.
- Eltahir YM, Aburizq W, Bensalah OK, Mohamed MS, Al Shamisi A, AbdElkader AI, et al. Modeling for Smart Vaccination against Peste des Petits Ruminants (PPR) in the Emirate of Abu Dhabi, United Arab Emirates. Animals. 2023;13(20).https://doi.org/10.3390/ani13203248
- Kamel M, El-Sayed A. Toward peste des petits virus (PPRV) eradication: Diagnostic approaches, novel vaccines, and control strategies. Virus Research [Internet]. 2019;274:197774. Available from: https://www.sciencedirect.com/science/article/pii/S0168170219304952https://doi.org/10.1016/j.virusres.2019.197774
- Jia XX, Wang H, Liu Y, Meng DM, Fan ZC. Development of vaccines for prevention of peste-des-petits-ruminants virus infection. Microbial Pathogenesis [Internet]. 2020;142(August 2019):104045.https://doi.org/10.1016/j.micpath.2020.104045
- Liu F, Wu X, Liu W, Li L, Wang Z. Current perspectives on conventional and novel vaccines against peste des petits ruminants. Veterinary Research Communications. 2014;38(4):307-22.https://doi.org/10.1007/s11259-014-9618-x
- Eloiflin RJ, Boyer M, Kwiatek O, Guendouz S, Loire E, Almeida RS de, et al. Evolution of attenuation and risk of reversal in peste des petits ruminants vaccine strain Nigeria 75/1. Viruses. 2019;11(8):1-18.https://doi.org/10.3390/v11080724
- Baron MD, Diop B, Njeumi F, Willett BJ, Bailey D. Future research to underpin successful peste des petits ruminants virus (PPRV) eradication. Journal of General Virology. 2017;98(11):2635-44.https://doi.org/10.1099/jgv.0.000944
- FAO, OIE. Global strategy for the control and eradication of PPR. International conference for the control and eradication of Peste des Petits Ruminants (PPR). Abidjan, Ivory Coast. World Organisation for Animal Health; United Nations Food and Agriculture Organisation: Rome, Italy. 2015. 225 p.
- Silva A. Strategies for improved Adenovirus and PPR vaccine production in different cell lines. 2016; A
- Kumar N, Barua S, Riyesh T, Tripathi BN. Advances in peste des petits ruminants vaccines. Veterinary Microbiology. 2017;206(January):91-101.https://doi.org/10.1016/j.vetmic.2017.01.010
- Cosseddu GM, Polci A, Pinoni C, Capobianco Dondona A, Iapaolo F, Orsini G, et al. Evaluation of Humoral Response and Protective Efficacy of an Inactivated Vaccine Against Peste des Petits Ruminants Virus in Goats. Transboundary and emerging diseases. 2016;63(5):e447-52.https://doi.org/10.1111/tbed.12314
- Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nature Reviews Immunology [Internet]. 2021;21(2):83-100. Available from: http://dx.doi.org/10.1038/s41577-020-00479-7https://doi.org/10.1038/s41577-020-00479-7
- Lombard M, Pastoret PP, Moulin AM. A brief history of vaccines and vaccination. OIE Revue Scientifique et Technique. 2007;26(1):29-48.https://doi.org/10.20506/rst.26.1.1724
- Montero DA, Vidal RM, Velasco J, Carreño LJ, Torres JP, Benachi O MA, et al. Two centuries of vaccination: historical and conceptual approach and future perspectives. Frontiers in Public Health. 2023;11.https://doi.org/10.3389/fpubh.2023.1326154
- Hofmeyer KA, Bianchi KM, Wolfe DN. Utilization of Viral Vector Vaccines in Preparing for Future Pandemics. Vaccines. 2022;10(3).https://doi.org/10.3390/vaccines10030436
- Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunological Reviews. 2022;310(1):27-46.https://doi.org/10.1111/imr.13089
- Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and challenges in the delivery of mrna-based vaccines. Pharmaceutics. 2020;12(2).https://doi.org/10.3390/pharmaceutics12020102
- Deering RP, Kommareddy S, Ulmer JB, Brito LA, Geall AJ. Nucleic acid vaccines: Prospects for non-viral delivery of mRNA vaccines. Expert Opinion on Drug Delivery. 2014;11(6):885-99.https://doi.org/10.1517/17425247.2014.901308
- Teo SP. Review of COVID-19 mRNA Vaccines: BNT162b2 and mRNA-1273. Journal of Pharmacy Practice. 2022;35(6):947-51.https://doi.org/10.1177/08971900211009650
- Gote V, Bolla PK, Kommineni N, Butreddy A. A Comprehensive Review of mRNA Vaccines. 2023;https://doi.org/10.3390/ijms24032700
- Lu B, Lim JM, Yu B, Song S, Neeli P, Sobhani N, et al. The next-generation DNA vaccine platforms and delivery systems: advances, challenges and prospects. Frontiers in Immunology. 2024;15(February):1-24.https://doi.org/10.3389/fimmu.2024.1332939