Document Type : Research Paper

Author

Intermediate school Youssef Al siddiq, Al-Kut City, Iraq.

Abstract

Mycotoxins represent a continuous major problem that face food industry around the world due to their health impacts on humans and animals. Research studies that target citrinin mycotoxin are at a limit range. The current study was carried out to explore the ameliorative effects of camel milk (CMk) on the rats exposed to citrinin (CTN) at the levels of liver function, cytokine response, hepatic tissue lipid profile, hepatic tissue antioxidant activity, and gene expression of some repair related genes in tissue. According to these, an experiment that lasted for 20 days included the recruitment of 24 male rats into four groups (control group: received no treatment, CMk group: received 1.25 ml/kg B Wt of CMk orally, CTN group: received CTN at 10 mg/kg diet, and CTN+CMk: received both CTN and CMk at the same doses). After the end of the experiment, blood samples were collected from all animals before scarification. Blood samples were utilized for AST, ALT, ALP, LDH, GGT, and Ck liver function enzymes and in IL-6 and IL-1b responses. Liver tissues were employed for the detection of GSH and SOD activities and in APE1 and OGG1 gene expression. The findings of the liver function demonstrated significant (p<0.05) improvements in the enzyme and cytokines levels in the CTN+CMk group comparing with both control and CTN groups. Moreover, antioxidant and gene activities recorded significant (p<0.05) alterations in the CTN+CMk group. The present study results display important data about the improving effects of camel milk on the citrinin-intoxicated rats.

Keywords

  1. Dalefield R. Veterinary Toxicology for Australia and New Zealand. Elsevier; Amsterdam, The Netherlands. Mycotoxins and mushrooms. 2017; pp. 373–419. https://doi.org/10.1016/b978-0-12-420227-6.00020-7
  2. Kováč Š, Nemec P, Betina V, Balan J. Chemical structure of citrinin. Nature. 1961;190:1104–1105. https://doi.org/10.1038/1901104a0 .
  3. Tangni EK, Pussemier L. Ochratoxin A and citrinin loads in stored wheat grains: Impact of grain dust and possible prediction using ergosterol measurement. Food Addit Contam. 2006;23:181–189. https://doi.org/10.1080/02652030500391911 .
  4. Ostry V, Malir F, Ruprich J. Producers and important dietary sources of ochratoxin A and citrinin. Toxins. 2013;5:1574–1586. https://doi.org/10.3390/toxins5091574 .
  5. He Y, Cox RJ. The molecular steps of citrinin biosynthesis in fungi. Chem Sci. 2016;7:2119–2127. https://doi.org/10.1039/C5SC04027B .
  6. Pitt JI. Biology and ecology of toxigenic Penicillium species. Adv Exp Med Biol. 2002;504:29–41. https://doi.org/10.1007/978-1-4615-0629-4_4
  7. Pattanagul P, Pinthong R, Phianmongkhol A, Tharatha S. Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp. Int J Food Microbiol. 2008;126:20–23. https://doi.org/10.1016/j.ijfoodmicro.2008.04.019 .
  8. Marič A, Skočaj M, Likar M, Sepčić K, Cigić IK, Grundner M, Gregori A. Comparison of lovastatin, citrinin and pigment production of different Monascus purpureus strains grown on rice and millet. J Food Sci Technol. 2019;56:3364–3373. https://doi.org/10.1007/s13197-019-03820-8 .
  9. Gil-Serna J, Vázquez C, González-Jaén MT, Patiño B. Mycotoxins toxicology. In: Batt C.A., Tortorello M.A., editors. Encyclopedia of Food Microbiology. 2nd ed. Academic Press; Cambridge, MA, USA: 2014. pp. 887–892. https://doi.org/10.1016/b978-0-12-384730-0.00234-2
  10. Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG. Aflatoxins: A global concern for food safety, human health and their management. Front Microbiol. 2017;7:2170. https://doi.org/10.3389/fmicb.2016.02170 .
  11. Kamle M, Mahato DK, Gupta A, Pandhi S, Sharma N, Sharma B, Mishra S, Arora S, Selvakumar R, Saurabh V, Dhakane-Lad J, Kumar M, Barua S, Kumar A, Gamlath S, Kumar P. Citrinin Mycotoxin Contamination in Food and Feed: Impact on Agriculture, Human Health, and Detection and Management Strategies. Toxins (Basel). 2022;14(2):85. https://doi.org/10.3390/toxins14020085 .
  12. Chang CH, Yu F., Wang LT, Lin YS, Liu BH. Activation of ERK and JNK signaling pathways by mycotoxin citrinin in human cells. Toxicol Appl Pharmacol. 2009;237:281–287. https://doi.org/10.1016/j.taap.2009.03.021 .
  13. Nakajima Y, Iguchi H, Kamisuki S, Sugawara F, Furuichi T, Shinoda Y. Low doses of the mycotoxin citrinin protect cortical neurons against glutamate-induced excitotoxicity. J Toxicol Sci. 2016;41:311–319. https://doi.org/10.2131/jts.41.311 .
  14. De Oliveira Filho JWG, Islam MT, Ali ES, Uddin SJ, de Oliveira Santos JV, de Alencar MVOB, Júnior ALG, Paz MFCJ, de Brito MdRM, de Sousa JMdC. A comprehensive review on biological properties of citrinin. Food Chem Toxicol. 2017;110:130–141. https://doi.org/10.1016/j.fct.2017.10.002 .
  15. Vrabcheva T, Usleber E, Dietrich R, Märtlbauer E. Co-occurrence of ochratoxin A and citrinin in cereals from Bulgarian villages with a history of Balkan endemic nephropathy. J Agric Food Chem. 2000;48:2483–2488. https://doi.org/10.1021/jf990891y .
  16. Bamias G, Boletis J. Balkan nephropathy: Evolution of our knowledge. Am J Kidney Dis. 2008;52:606–616. https://doi.org/10.1053/j.ajkd.2008.05.024 .
  17. López Sáncheza P, de Nijsa M, Spanjerb M, Pietric A, Bertuzzic T, Starski A, Postupolski J, Castellari M, Hortós M. Generation of occurrence data on citrinin in food. EFSA Support Publ. 2017;14:1177E. https://doi.org/10.2903/sp.efsa.2017.EN-1177 .
  18. 18. Swelum AA, El-Saadony MT, Abdo M, Ombarak RA, Hussein EOS, Suliman G, Alhimaidi AR, Ammari AA, Ba-Awadh H, Taha AE, El-Tarabily KA, Abd El-Hack ME. Nutritional, antimicrobial and medicinal properties of Camel's milk: A review. Saudi J Biol Sci. 2021;28(5):3126-3136. https://doi.org/10.1016/j.sjbs.2021.02.057 .
  19. Vázquez-Medina JP, et al. Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals. J Exp Biol. 2011;214(Pt 8):1294-1299. https://doi.org/10.1242/jeb.054320
  20. Tietz N.W., et al. A reference method for measurement of alkaline phosphatase activity in human serum. Clin Chem. 1983;29(5):751-761. https://doi.org/10.1093/clinchem/29.5.751
  21. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28(1):56-63. https://doi.org/10.1093/ajcp/28.1.56
  22. Szasz G, Gruber W, Bernt E. Creatine kinase in serum: 1. Determination of optimum reaction conditions. Clin Chem. 1976;22(5):650-656. https://doi.org/10.1093/clinchem/22.5.650
  23. Würzburg U, et al. Determination of creatine kinase-MB in serum using inhibiting antibodies (author's transl) Klin. Wochenschr. 1976;54(8):357-360. https://doi.org/10.1007/BF01469790
  24. Babson AL, Babson SR. Kinetic colorimetric measurement of serum lactate dehydrogenase activity. Clin Chem. 1973;19(7):766-769. https://doi.org/10.1093/clinchem/19.7.766
  25. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-888. https://www.scienceopen.com/document?vid=0ae50d69-a9d9-486b-adf1-f9d2394d1630
  26. Nishikimi M, Appaji N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res Commun. 1972;46(2):849-854. https://doi.org/10.1016/S0006-291X(72)80218-3
  27. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957:226. https://doi.org/10.1016/S0021-9258(18)64849-5
  28. Rotimi OA, Olayiwola IO, Ademuyiwa O, Balogun EA. Effects of fibre-enriched diets on tissue lipid profiles of msg obese rats. Food Chem Toxicol. 2012;50:4062-4067. https://doi.org/10.1016/j.fct.2012.08.001
  29. 29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Methods. 2001;25(4):402-408. https://doi.org/10.1006/meth.2001.1262
  30. Caderni G, Giovannelli L, Lodovici M. Aging related changes in circulating reactive oxygen species (ROS) and protein carbonyls are indicative of liver oxidative injury. Toxicol Rep. 2018;5:141-145. https://doi.org/10.1016/j.toxrep.2017.12.017
  31. Xie Z, Wu B, Shen G, Li X, Wu Q. Curcumin alleviates liver oxidative stress in type 1 diabetic rats. Mol Med Rep. 2018;17(1):103-108. https://doi.org/10.3892/mmr.2017.7911
  32. 32. Abudayyak M, Karaman EF, Ozden S. Mechanisms underlying citrinin-induced toxicity via oxidative stress and apoptosis-mediated by mitochondrial-dependent pathway in SH-SY5Y cells. Drug Chem Toxicol. 2023;46(5):944-954. https://doi.org/10.1080/01480545.2022.2113095 .
  33. Wu D, Yang C, Yang M, Wu Y, Mao Y, Zhou X, Wang J, Yuan Z, Wu J. Citrinin-Induced Hepatotoxicity in Mice Is Regulated by the Ca2+/Endoplasmic Reticulum Stress Signaling Pathway. Toxins (Basel). 2022;14(4):259. https://doi.org/10.3390/toxins14040259 .
  34. Zargar S, Wani TA. Food Toxicity of Mycotoxin Citrinin and Molecular Mechanisms of Its Potential Toxicity Effects through the Implicated Targets Predicted by Computer-Aided Multidimensional Data Analysis. Life (Basel). 2023;13(4):880. https://doi.org/10.3390/life13040880 .
  35. Chan WH. Citrinin induces apoptosis via a mitochondria-dependent pathway and inhibition of survival signals in embryonic stem cells, and causes developmental injury in blastocysts. Biochem J. 2007;404(2):317-26. https://doi.org/10.1042/BJ20061875 .
  36. Wang Z, Qiao X, Hao S, Ji R. Demonstration of hepatoprotective action of camel milk through improving antioxidant activity and regulating gene expression in mice. J Camel Pract Res. 2017;24(2):169–174. http://dx.doi.org/10.5958/2277-8934.2017.00026.1
  37. Liu W, Wang L, Zheng C, Liu L, Wang J, Li D, Tan Y, Zhao X, He L, Shu W. Microcystin-LR increases genotoxicity induced by aflatoxin B1 through oxidative stress and DNA base excision repair genes in human hepatic cell lines. Environ Pollut. 2018;233:455–463. https://doi.org/10.1016/j.envpol.2017.10.067
  38. Korashy HM, El Gendy MA, Alhaider AA, El-Kadi AO. Camel milk modulates the expression of aryl hydrocarbon receptor-regulated genes, Cyp1a1, Nqo1, and Gsta1, in murine hepatoma Hepa 1c1c7 cells. J Biomed Biotechnol. 2012 https://doi.org/10.1155/2012/782642 .