Document Type : Research Paper

Authors

Al-Qadisiyah Journal of Veterinary Medicine Sciences

10.29079/qjvms.2022.179325

Abstract

Nanocarriers serve a crucial function in improving the delivery of insoluble and poorly penetrating drugs. Inorganic, lipidic, peptide-based, or virus-like nanocarriers and polymeric nanoparticles are categories of nanoscale materials. In this article, we emphasized on polymeric nanosystems, with micelles as the primary focus. These compounds improve the solubilization, stability, and bioavailability of hydrophobic drugs. Natural or synthetic polymers are utilized to construct polymeric nano-systems. Polymeric Micelles are often composed of amphiphilic di- or tri-block copolymers that contain both hydrophilic and hydrophobic components. They have the ability to self-aggregate. Below a critical micellar concentration, also known as CMC, these polymers persist in solution as free molecules; however, as they exceed CMC, they start to selfassemble into micelles with a hydrophilic shell enclosing a lipophilic core. Shape, size, thermodynamic and kinetic stability, surface qualities, and the capacity to internalize cells are all areas in which they excel. Pluronic F127 is an impressive polymeric micelle used to enhance the delivery of poorly soluble drugs. It enhances the solubility, stability, bioavailability, target selectivity, and bioactivities of a number of phytochemicals, such as berberine, resveratrol, and curcumin, in aqueous settings. Pluronic F-127 is a biocompatible micelle that has shown promise as a drug delivery tool for the research and development of delivery systems for poorly watersoluble therapeutics.

 

Keywords

1-Feynman RP. There's plenty of room at the bottom: An invitation to enter a new field of physics. Miniaturization, Reinhold. 1961;
2-Yadi M, Mostafavi E, Saleh B, Davaran S, Aliyeva I, Khalilov R, et al. Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artif cells, nanomedicine, Biotechnol. 2018;46(sup3):S336-43.https://doi.org/10.1080/21691401.2018.1492931
3-Solanki A, Kim JD, Lee K-B. Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. 2008;https://doi.org/10.2217/17435889.3.4.567
4-Chen Z. Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med. 2010;16(12):594-602.https://doi.org/10.1016/j.molmed.2010.08.001
5-Salehi B, Calina D, Docea AO, Koirala N, Aryal S, Lombardo D, et al. Curcumin's nanomedicine formulations for therapeutic application in neurological diseases. J Clin Med. 2020;9(2):430.https://doi.org/10.3390/jcm9020430
6-Caddeo C, Manconi M, Fadda AM, Lai F, Lampis S, Diez-Sales O, et al. Nanocarriers for antioxidant resveratrol: formulation approach, vesicle self-assembly and stability evaluation. Colloids surfaces B Biointerfaces. 2013;111:327-32.https://doi.org/10.1016/j.colsurfb.2013.06.016
7-Kumar A, Ahuja A, Ali J, Baboota S. Curcumin-loaded lipid nanocarrier for improving bioavailability, stability and cytotoxicity against malignant glioma cells. Drug Deliv. 2016;23(1):214-29.https://doi.org/10.3109/10717544.2014.909906
8-Shi Y, Van der Meel R, Chen X, Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10(17):7921.https://doi.org/10.7150/thno.49577
9-Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol. 2020;20(5):321-34.https://doi.org/10.1038/s41577-019-0269-6
10-Paris JL, Vallet-Regí M. Ultrasound-activated nanomaterials for therapeutics. Bull Chem Soc Jpn. 2020;93(2):220-9.https://doi.org/10.1246/bcsj.20190346
11-Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, et al. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers (Basel). 2020;12(6):1397.https://doi.org/10.3390/polym12061397
12-o Lett. 2020;20(6):4543-9.https://doi.org/10.1021/acs.nanolett.0c01386
13-anomedicine; a review. Bull Chem Soc Jpn. 2020;93(1):1-12.https://doi.org/10.4011/shikizai.93.e1
14-Gadekar V, Borade Y, Kannaujia S, Rajpoot K, Anup N, Tambe V, et al. Nanomedicines accessible in the market for clinical interventions. J Control Release. 2021;330:372-97.https://doi.org/10.1016/j.jconrel.2020.12.034
15-Perotti M, Perez L. Virus-like particles and nanoparticles for vaccine development against HCMV. Viruses. 2019;12(1):35.https://doi.org/10.3390/v12010035
16-Caruso F. Engineering of core-shell particles and hollow capsules. In: Nano-surface chemistry. Dekker; 2002. p. 505-25.https://doi.org/10.1201/9780203908488.ch14
17-Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M. Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym. 2008;73(1):44-54.https://doi.org/10.1016/j.carbpol.2007.11.007
18-Sahu SK, Mallick SK, Santra S, Maiti TK, Ghosh SK, Pramanik P. In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J Mater Sci Mater Med. 2010;21(5):1587-97.https://doi.org/10.1007/s10856-010-3998-4
 
19-Lei Z, Bi S. The silica-coated chitosan particle from a layer-by-layer approach for pectinase immobilization. Enzyme Microb Technol. 2007;40(5):1442-7.https://doi.org/10.1016/j.enzmictec.2006.10.027
20-Talaei F, Azhdarzadeh M, Nasel HH, Moosavi M, Foroumadi A, Dinarvand R, et al. Core shell methyl methacrylate chitosan nanoparticles: In vitro mucoadhesion and complement activation. DARU J Fac Pharmacy, Tehran Univ Med Sci. 2011;19(4):257.
21-Escobar-Chávez JJ, López-Cervantes M, Naik A, Kalia Y, Quintanar-Guerrero D, Ganem-Quintanar A. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci. 2006;9(3):339-58.
22-Francis MF, Cristea M, Winnik FM. Polymeric micelles for oral drug delivery: Why and how. Pure Appl Chem. 2004;76(7-8):1321-35.https://doi.org/10.1351/pac200476071321
23-Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413-20.https://doi.org/10.1023/A:1016212804288
24-Lipinski C. Poor aqueous solubility-an industry wide problem in drug discovery. Am Pharm Rev. 2002;5(3):82-5.
25-Hasirci V, Vrana E, Zorlutuna P, Ndreu A, Yilgor P, Basmanav FB, et al. Nanobiomaterials: a review of the existing science and technology, and new approaches. J Biomater Sci Polym Ed. 2006;17(11):1241-68.https://doi.org/10.1163/156856206778667442
26-Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem. 2012;84(2):377-410.https://doi.org/10.1351/PAC-REC-10-12-04
27-Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release. 2021;332:312-36.https://doi.org/10.1016/j.jconrel.2021.02.031
28-Feng X, Wang C, Lin B, Xu F. Methoxy poly (ethylene glycol)-conjugated linoleic acid polymeric micelles for paclitaxel delivery. Colloid J. 2006;68(6):779-83.https://doi.org/10.1134/S1061933X06060160
29-Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6(12):815-23.https://doi.org/10.1038/nnano.2011.166
30-Le Garrec D, Gori S, Luo L, Lessard D, Smith DC, Yessine M-A, et al. Poly (N-vinylpyrrolidone)-block-poly (D, L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control release. 2004;99(1):83-101.https://doi.org/10.1016/j.jconrel.2004.06.018
31-Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carr Syst. 2003;20(5).https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i5.20
32-Moghimi SM, Muir IS, Illum L, Davis SS, Kolb-Bachofen V. Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochim Biophys Acta (BBA)-Molecular Cell Res. 1993;1179(2):157-65.https://doi.org/10.1016/0167-4889(93)90137-E
33-Bogman K, Erne-Brand F, Alsenz J, Drewe J. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J Pharm Sci. 2003;92(6):1250-61.https://doi.org/10.1002/jps.10395
34-Ambade A V, Savariar EN, Thayumanavan S. Dendrimeric micelles for controlled drug release and targeted delivery. Mol Pharm. 2005;2(4):264-72.https://doi.org/10.1021/mp050020d
35-Mikhail AS, Allen C. Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release. 2009;138(3):214-23.https://doi.org/10.1016/j.jconrel.2009.04.010
36-Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116(9):5338-431.https://doi.org/10.1021/acs.chemrev.5b00589
37-Sabra S, Abdelmoneem M, Abdelwakil M, Mabrouk MT, Anwar D, Mohamed R, et al. Self-assembled nanocarriers based on amphiphilic natural polymers for anti-cancer drug delivery applications. Curr Pharm Des. 2017;23(35):5213-29.https://doi.org/10.2174/1381612823666170526111029
38-Jones M-C, Leroux J-C. Polymeric micelles-a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48(2):101-11.https://doi.org/10.1016/S0939-6411(99)00039-9
39-Bozó T, Wacha A, Mihály J, Bóta A, Kellermayer MSZ. Dispersion and stabilization of cochleate nanoparticles. Eur J Pharm Biopharm. 2017;117:270-5.https://doi.org/10.1016/j.ejpb.2017.04.030
40-Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198-214.https://doi.org/10.1016/j.ijpharm.2012.08.042
41-Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release. 2017;268:364-89.https://doi.org/10.1016/j.jconrel.2017.09.001
42-Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, et al. Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opin Drug Deliv. 2019;16(4):397-413.https://doi.org/10.1080/17425247.2019.1597848
43-Bilia AR, Piazzini V, Risaliti L, Vanti G, Casamonti M, Wang M, et al. Nanocarriers: A successful tool to increase solubility, stability and optimise bioefficacy of natural constituents. Curr Med Chem. 2019;26(24):4631-56.https://doi.org/10.2174/0929867325666181101110050
44-Vanti G. Recent strategies in nanodelivery systems for natural products: A review. Environ Chem Lett. 2021;19(6):4311-26.https://doi.org/10.1007/s10311-021-01276-x
45-Cote B, Carlson LJ, Rao DA, Alani AWG. Combinatorial resveratrol and quercetin polymeric micelles mitigate doxorubicin induced cardiotoxicity in vitro and in vivo. J Control Release. 2015;213:128-33.https://doi.org/10.1016/j.jconrel.2015.06.040
46-Rodriguez-Hernandez J, Chécot F, Gnanou Y, Lecommandoux S. Toward 'smart'nano-objects by self-assembly of block copolymers in solution. Prog Polym Sci. 2005;30(7):691-724.https://doi.org/10.1016/j.progpolymsci.2005.04.002
47-Zhong S, Pochan DJ. Cryogenic transmission electron microscopy for direct observation of polymer and small-molecule materials and structures in solution. Polym Rev. 2010;50(3):287-320.https://doi.org/10.1080/15583724.2010.493254
48-Truong NP, Whittaker MR, Mak CW, Davis TP. The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv. 2015;12(1):129-42.https://doi.org/10.1517/17425247.2014.950564
49-Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Today. 2012;7(1):53-65.https://doi.org/10.1016/j.nantod.2012.01.002
50-Ahmad Z, Shah A, Siddiq M, Kraatz H-B. Polymeric micelles as drug delivery vehicles. Rsc Adv. 2014;4(33):17028-38.https://doi.org/10.1039/C3RA47370H
51-Lee J, Cho EC, Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly (D, L-lactide)-block-poly (ethylene oxide) micelles. J Control Release. 2004;94(2-3):323-35.https://doi.org/10.1016/j.jconrel.2003.10.012
52-Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine. 2018;13:2921.https://doi.org/10.2147/IJN.S158696
53-Bandi SP, Kumbhar YS, Venuganti VVK. Effect of particle size and surface charge of nanoparticles in penetration through intestinal mucus barrier. J Nanoparticle Res. 2020;22(3):1-11.https://doi.org/10.1007/s11051-020-04785-y
54-Hoeller S, Sperger A, Valenta C. Lecithin based nanoemulsions: a comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int J Pharm. 2009;370(1-2):181-6.https://doi.org/10.1016/j.ijpharm.2008.11.014
55-Zhu Y, Meng T, Tan Y, Yang X, Liu Y, Liu X, et al. Negative surface shielded polymeric micelles with colloidal stability for intracellular endosomal/lysosomal escape. Mol Pharm. 2018;15(11):5374-86.https://doi.org/10.1021/acs.molpharmaceut.8b00842
56-Nelemans LC, Gurevich L. Drug delivery with polymeric nanocarriers-cellular uptake mechanisms. Materials (Basel). 2020;13(2):366.https://doi.org/10.3390/ma13020366
57-Chen T, He B, Tao J, He Y, Deng H, Wang X, et al. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Adv Drug Deliv Rev. 2019;143:177-205.https://doi.org/10.1016/j.addr.2019.04.009
58-Cui C, Xue Y-N, Wu M, Zhang Y, Yu P, Liu L, et al. Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Biomaterials. 2013;34(15):3858-69.https://doi.org/10.1016/j.biomaterials.2013.01.101
59-Rapoport N, Marin A, Luo Y, Prestwich GD, Muniruzzaman MD. Intracellular uptake and trafficking of Pluronic micelles in drug‐sensitive and MDR cells: Effect on the intracellular drug localization. J Pharm Sci. 2002;91(1):157-70.https://doi.org/10.1002/jps.10006
60-Bodratti AM, Alexandridis P. Formulation of poloxamers for drug delivery. J Funct Biomater. 2018;9(1):11.https://doi.org/10.3390/jfb9010011
61-Alexandridis P. Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers. Chem Eng Technol. 2011;34(1):15-28.https://doi.org/10.1002/ceat.201000335
62-Gioffredi E, Boffito M, Calzone S, Giannitelli SM, Rainer A, Trombetta M, et al. Pluronic F127 hydrogel characterization and biofabrication in cellularized constructs for tissue engineering applications. Procedia Cirp. 2016;49:125-32.https://doi.org/10.1016/j.procir.2015.11.001
63-Alexandridis P, Hatton TA. Poly (ethylene oxide) poly (propylene oxide) poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surfaces A Physicochem Eng Asp. 1995;96(1-2):1-46.https://doi.org/10.1016/0927-7757(94)03028-X
64-Gebelein CG. Bioactive polymeric systems, an overview. Bioact Polym Syst. 1985;1-15.https://doi.org/10.1007/978-1-4757-0405-1_1
65-Chiappetta DA, Sosnik A. Poly (ethylene oxide)-poly (propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm. 2007;66(3):303-17.https://doi.org/10.1016/j.ejpb.2007.03.022
66-Salama AH. Pluronic F127 and its applications. Pharmacologyonline. 2021;2:1393-403.
67-Malmsten M. Block copolymers in pharmaceutics. Amphiphilic Block Copolym Self Assem Appl Amsterdam, New York Elesvier. 2000;319-46.https://doi.org/10.1016/B978-044482441-7/50015-3
68-Rowe RC. Paul J sheskey and Paul J Weller. Hand Book of Pharmaceutical Excipients. Am Pharm asso Press. 2003;132-4.
69-Schmolka IR. Physical basis for poloxamer interactions. Ann N Y Acad Sci. 1994;720(1):92-7.https://doi.org/10.1111/j.1749-6632.1994.tb30437.x
70-Johnston TP, Beris H, Wout ZG, Kennedy JL. Effects on splenic, hepatic, hematological, and growth parameters following high-dose poloxamer 407 administration to rats. Int J Pharm. 1993;100(1-3):279-84.https://doi.org/10.1016/0378-5173(93)90103-M
71-Pec EA, Wout ZG, Johnston TP. Biological activity of urease formulated in poloxamer 407 after intraperitoneal injection in the rat. J Pharm Sci. 1992;81(7):626-30.https://doi.org/10.1002/jps.2600810707
72-Qian S, Wong YC, Zuo Z. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine. Int J Pharm. 2014;468(1-2):272-82.https://doi.org/10.1016/j.ijpharm.2014.04.015
73-Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2012;64:37-48.https://doi.org/10.1016/j.addr.2012.09.013
74-Alexandridis P, Zhou D, Khan A. Lyotropic liquid crystallinity in amphiphilic block copolymers: temperature effects on phase behavior and structure for poly (ethylene oxide)-b-poly (propylene oxide)-b-poly (ethylene oxide) copolymers of different composition. Langmuir. 1996;12(11):2690-700.https://doi.org/10.1021/la951025s
75-Kositza MJ, Bohne C, Alexandridis P, Hatton TA, Holzwarth JF. Dynamics of micro-and macrophase separation of amphiphilic block-copolymers in aqueous solution. Macromolecules. 1999;32(17):5539-51.https://doi.org/10.1021/ma9904316
76-Nivaggioli T, Alexandridis P, Hatton TA, Yekta A, Winnik MA. Fluorescence probe studies of pluronic copolymer solutions as a function of temperature. Langmuir. 1995;11(3):730-7.https://doi.org/10.1021/la00003a011
77-Batrakova E V, Kabanov A V. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control release. 2008;130(2):98-106.https://doi.org/10.1016/j.jconrel.2008.04.013
78-Prud'homme RK, Wu G, Schneider DK. Structure and rheology studies of poly (oxyethylene− oxypropylene− oxyethylene) aqueous solution. Langmuir. 1996;12(20):4651-9.https://doi.org/10.1021/la951506b
79-Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control release. 2001;73(2-3):137-72.https://doi.org/10.1016/S0168-3659(01)00299-1
80-Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 1995;16(2-3):295-309.https://doi.org/10.1016/0169-409X(95)00031-2
81-Moghimi SM, Hunter AC. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol. 2000;18(10):412-20.https://doi.org/10.1016/S0167-7799(00)01485-2
82-Gregoriou Y, Gregoriou G, Yilmaz V, Kapnisis K, Prokopi M, Anayiotos A, et al. Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells. Nanotheranostics. 2021;5(1):113.https://doi.org/10.7150/ntno.51955
83-Almeida TC, Seibert JB, Almeida SH de S, Amparo TR, Teixeira LF de M, Barichello JM, et al. Polymeric micelles containing resveratrol: development, characterization, cytotoxicity on tumor cells and antimicrobial activity. Brazilian J Pharm Sci. 2020;56.https://doi.org/10.1590/s2175-97902019000418401
84-Besegato F, Chorilli M, Deng D, Bagnato S. Curcumin-loaded Pluronic® F-127 Micelles as a Drug Delivery System for Curcumin-mediated Photodynamic Therapy for Oral Application. Photochem Photobiol. 2021;
85-Fraile M, Buratto R, Gomez B, Martin A, Cocero MJ. Enhanced delivery of quercetin by encapsulation in poloxamers by supercritical antisolvent process. Ind Eng Chem Res. 2014;53(11):4318-27.https://doi.org/10.1021/ie5001136
86-Wadsworth I. Cytomegalovirus Inhibition by Pluronic-encapsulated Quercetin and Synergy with Ganciclovir. Utah State University; 2020.
87-Al Fatease A, Shah V, Nguyen DX, Cote B, LeBlanc N, Rao DA, et al. Chemosensitization and mitigation of Adriamycin-induced cardiotoxicity using combinational polymeric micelles for co-delivery of quercetin/resveratrol and resveratrol/curcumin in ovarian cancer. Nanomedicine Nanotechnology, Biol Med. 2019;19:39-48.https://doi.org/10.1016/j.nano.2019.03.011
88-Kwon SH, Kim SY, Ha KW, Kang MJ, Huh JS, Im Jong T, et al. Pharmaceutical evaluation of genistein-loaded pluronic micelles for oral delivery. Arch Pharm Res. 2007;30(9):1138-43.https://doi.org/10.1007/BF02980249