

Tissue Architecture of Sciatic Nerves in the Euphoretic Jerboa: A Histomorphological Investigation

Abdulrazzaq B. kadhim¹ Raed Gahat Mehjal²Manar Mousa Alhussein³ Hussein hamid Abid Al-Hichamy
Dept. of Anatomy and Histology, College of Veterinary Medicine¹; Dept. of Pathological Analysis, College of
Science², College of Biotechnology³, University of Al-Qadisiyah, Iraq.

[https://orcid.org/0000-0001-6356-4223¹](https://orcid.org/0000-0001-6356-4223)

Submitted: August 02, 2025

Revised: September 01, 2025

Accepted: November 05,
2025

Correspondence:

Abdulrazzaq B. kadhim
abdulrazzaq.alrabei@qu.edu.iq

Abstract Experimental research includes models of peripheral nervous system illnesses, nerve damage, and regeneration frequently use the sciatic nerve in rats. Still, the sciatic nerve's unusual features and possibility for "dying back" neuropathies call for greater explanation in terms of shape. Using hind limb nerves of rats, researchers have created experimental models of neuropathies. Six male Euphoretic jerboas split into two groups and anaesthetized with ketamine and xylazine in the research. The sciatic nerves were revealed and morphometric measures noted following meticulous anatomical dissection. The sciatic nerve, according to results, first bifurcates into two main branches near the knee joint: the peroneal (sural) nerve and the posterior tibial nerve. It then runs via a deep channel between the dorsal side of the ischium and the sacral bone in the minor pelvis. Indicating the range of nerve functions, histological study found a network of capillaries inside the endoneurium, Schwann cell nuclei on the outer edge of the myelin sheath, and varied nerve fibre sizes. Comprising concentric layers of connective tissue that give structural support and protection for the nerve fibres, the perineurium which encases the nerve is Protection of the nerve against mechanical damage depends critically on the epineurium, the outermost layer of connective tissue covering it. Notable are internal vibrations of nerve fibres within the axonal area and around the myelin sheath, presumably connected to mechanical interactions or electrical activity among biological components within the neuron. These results could support comparative studies or investigations on rodent neurological damage and recovery.

Keywords: Nerve, nerve fibers, connective tissue, Euphoretic jerboas

©Authors, 2025, College of Veterinary Medicine, University of Al-Qadisiyah. This is an open access article under the CC BY 4.0 license (<http://creativecommons.org/licenses/by/4.0/>).

Introduction The sciatic nerve is the one that is most commonly employed in experimental studies involving nerve injury, regeneration, and models of peripheral nervous system diseases. Usually, macroscopic and microscopic data on the sciatic nerves refer to the control groups of these experimental studies, and so it is still necessary to systematize these data through a specific study. The morphology of the sciatic nerve in rats has interested neuroscientists for many decades, and despite an extensive publication in the last decade (1,2), information on normal sciatic nerve data in rats deserves more clarification. If you have problems with the nerves in the brachial plexus or the lumbosacral plexus, they are not at all the same. The adjacent connective tissue is also different. Researchers like to do experiments on the lumbosacral plexus because it is more likely to get

diabetic neuropathies, which is the most common disease of the lumbosacral plexus roots in men, and because it is hard to diagnose because of where the roots are located (3,4). The sciatic nerve and its branches are at risk of being the first nerves to develop "dying back" neuropathies due to their length. Moreover, these nerves are less susceptible to traumas that would interfere with the experimental results. Taken together, all these factors have led investigators to develop experimental models of neuropathies using nerves of the hind limbs of rats (5).

Material and Methods

Ethical approval

The project was approved (2258 in 2/9/2024) by the Committee for Research Ethics at the College of

Veterinary Medicine, University of AL-Qadisiyah, Iraq.

We divided six male Euphoretic jerboas into two groups: animals weighing between 60 and 100 g (n = 6). The animals were anaesthetized with ketamine and xylazine. After careful anatomical dissection, the sciatic nerves were totally exposed, and proximal (immediately after passing through the major sciatic foramen) and distal (at the popliteal fossa, right away before the terminal branching) segments were removed for histological hematoxylin and eosin processing as well as Masson trichrome stain. For the morphometric study, the images were acquired via a digital camera. Next, we recorded the morphometric parameters, including weight (g) and length (mm). We also recorded the width (mm) and thickness (mm).

Results:

As shown in Figure 1, the sciatic nerve goes to its destination through a deep groove between the dorsal side of the ischium and the sacral bone in the minor pelvis. As it moves away from the sciatic notch, it gets longer between the gluteal and biceps femoris muscles on the underside of the piriformis muscle (Fig. 2). Two millimetres below the piriformis muscle, it goes over the quadratus femoris muscle and into the thigh area in an oblique direction. There is also a short branch that goes to the piriformis muscle and gives nerves to the biceps femoris, semitendinosus, and semimembranosus muscles (Fig. 3). The peroneal (fibular) nerve and the posterior tibial nerve are the two main branches that it divides into once it reaches its termination, roughly 5 millimetres cranial to the stifle joint (Fig. 4). The mean of length and thickness was 45 ± 0.04 mm and 0.1 ± 0.00 mm.

A study conducted using a microscope on the sciatic nerve revealed that blood capillaries are located in the endoneurium, Schwann cell nuclei are located peripheral to the myelin sheath, and nerve fibres come in a variety of diameters. When modelling connective tissue, the preneurium (Figure 5) was a component that encompassed the entire nerve, resulting in the formation of concentric layers around it. Additionally, it was possible to observe squamous nuclei of fibroblasts. Although it was not modeled, the epineurium, which is also composed of connective tissue, was observed in close proximity to the preneurium (Figure 6), it was seen that the axons and the region around the myelin sheath were vibrating internally (Figure 7).

Discussion:

The gross anatomy of the sciatic nerve: The morphology of the sciatic nerve in jerboas and other

rodents exhibits a specific trajectory that aligns with the anatomical configuration of the pelvis and thigh (6,7). The sciatic nerve traverses a deep fissure between the posterior surface of the ischium and the sacrum in the pelvis, enabling its extension to the thigh (8). Upon leaving the sciatic notch, the nerve traverses between the gluteus medium and the biceps femoris on the anterior surface of the piriformis muscle (9,10). This anatomical path guarantees an effective allocation of nerve fibres to the principal muscles of the thigh, including the biceps femoris, semitendinosus, and semimembranosus (11,12). The sciatic nerve bifurcates into two primary branches as it nears the knee joint: the peroneal (sural) nerve and the posterior tibial nerve (13). This split facilitates an exact functional allocation of the nerves in the hind limb, with the peroneal nerve innervating the muscles that govern foot movement, whereas the posterior tibial nerve innervates the leg's extensor muscles (14). Histological features of the sciatic nerve: Histological analysis revealed a network of capillaries within the endoneurium, which supplied essential nourishment to the nerve fibres (15). Schwann cell nuclei were located in the outer perimeter of the myelin sheath, underscoring their essential role in myelination and the support of nerve fibres. Different nerve fibres have different diameters, which shows the variety of nerve functions (16). Wide fibres help send sensory and motor information quickly, while small fibres are connected to feeling pain and temperature. The preneurium, which encases the nerve, consists of concentric layers of connective tissue that provide structural support and protection for the nerve fibres. In this area, fibro epithelial cell nuclei were also found, which means that cells are still working to keep the connective tissue intact. The epineurium, the outermost layer of connective tissue encasing the nerve, is crucial for safeguarding it against mechanical damage (17).

Internal vibrations of nerve fibres: Noteworthy is the existence of internal vibrations within the axonal area and around the myelin sheath. These vibrations may pertain to the electrical activity of nerve fibres or to mechanical interactions among biological components within the neuron (18). This phenomenon necessitates additional investigation to comprehend its potential physiological function in nerve signal transmission or in preserving the integrity of nerve fibres. The study mostly looked at the jerboa, but the results may be similar to other rodents as well, since the sciatic nerve is similar in structure and function in many rodent species. Nonetheless, minor variations in lengths and diameters may occur depending on the body size and motor function of each species (4,10).

It is clear that the structure and histology of the sciatic nerve in jerboas are perfectly suited to the sensory and motor functions of the back leg. The intricate histological architecture, which encompasses microvasculature, Schwann cells, and specialized connective tissues, underscores the significance of this neuron in the effective transmission of nerve signals (9). These results give us a better understanding of how the sciatic nerve works in rodents. They may also help with comparative studies or research about neurological injury and recovery.

Conclusion

The study provides an anatomical and histological description of the sciatic nerve, highlighting its course, branching patterns, and structural features. It begins beneath the gluteal and biceps femoris muscles and runs through a groove between the ischium and sacral bone. Key elements include blood capillaries, Schwann cell nuclei, and nerve fibers. The study offers insights for therapeutic and research purposes in neurology and orthopedics, with further research exploring the functional consequences of vibrations and connective tissue layers.

Conflict of interest Authors declare no conflict of interest.

Funding source :This research had no specific fund; however, it was self-funded by the authors

Figure 1 macro anatomical section of sciatic nerve show origin the lumbosacral plexus (blue arrow), right and left sciatic nerve (red arrow)

Figure 2 macro anatomical section show nerves of lumbosacral plexuses: gluteal nerve (white arrow), obturator nerve (red arrow), sciatic nerve (yellow arrow) and femor nerve (green arrow)

Figure 3 macro anatomical section of hind limb of jerboa show: fibulae fossa (blue arrow), sciatic nerve (yellow arrow), biceps femoris (white star) and gasteronemius (black star)

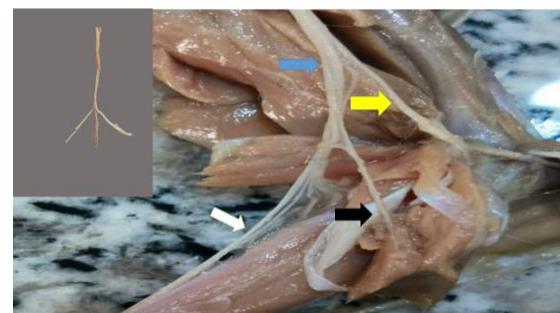


Figure 4. macro anatomical section of hind limb of jerboa show :branched of sciatic nerve (blue arrow),fibular nerve (black nerve),tibia nerve (white nerve) and (yellow arrow)

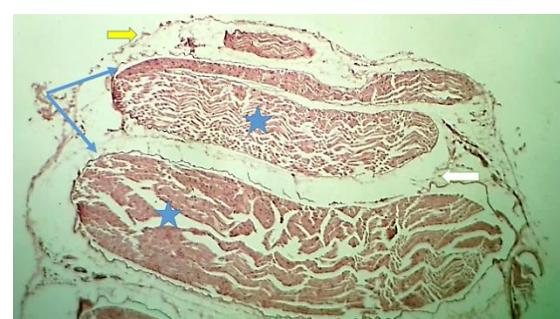


Figure 5 Histological section of sciatic nerve of jerboa show: preneurium (yellow arrow), epineurium (blue arrow), nerve fascicle (blue star) and connective tissue (white arrow) H&E 40X

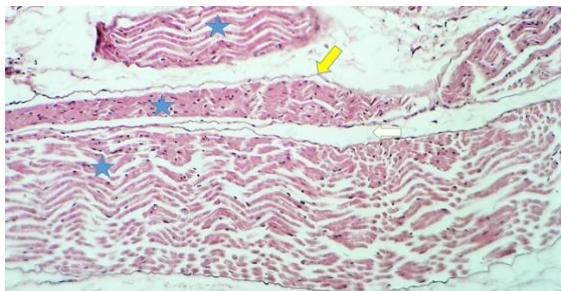


Figure.6 Histological section of sciatic nerve of jerboa show: epineurium (yellow arrow), nerve fascicle (blue star) and connective tissue (white arrow) H&E 40X

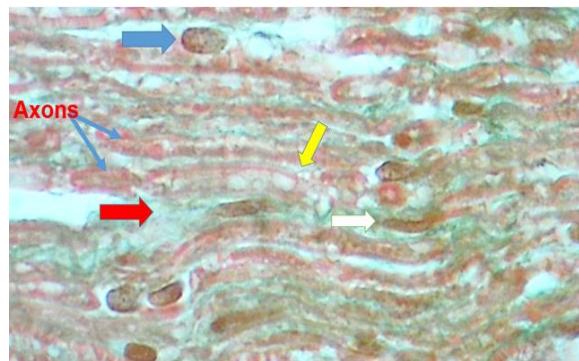


Figure.9 Histological section of sciatic nerve fiber of jerboa show: Axons, Schwan cell (blue arrow), fibroblast (white arrow), collagen fiber (yellow arrow) and connective tissue (red arrow) Massontrichom 400X

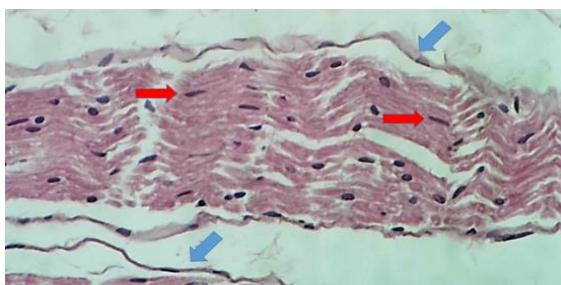


Figure.7 Histological section of sciatic nerve fiber of jerboa show: epineurium (blue arrow), nerve fascicle (blue star) and fibroblast (red arrow) H&E 100X

Figure.8 Histological section of sciatic nerve fiber of jerboa show: Axons , Ranvier node (blue arrow) and Schwan cell (yellow arrow) H&E

Conflict of interest

There is no conflict of interest in this study as stated by the authors.

Acknowledgment

Not applicable.

Funding source

This research had no specific fund; however, it was self-funded by the authors.

References

1. Xie M, Gol'Din P, Herdina AN, Estefa J, Medvedeva EV, Li L, Newton PT, Kotova S, Shakvuta B, Saxena A, Shumate LT. The secondary ossification centre stimulates and protects the growth plate structure. *elife*. 2020 Oct 16;9:e55212.
2. Sahd, L. The anatomy of seismic signalling: morphological adaptations of the hind limb in drumming and non-drumming African mole-rats (Bathyergidae) (Doctoral dissertation, Stellenbosch: Stellenbosch University, 2021.).
3. Xie M, Gol'din P, Herdina AN, Estefa J, Medvedeva EV, Li L, Newton PT, Kotova S, Shakvuta B, Saxena A, Shumate LT. Secondary ossification centres evolved to make endochondral bone growth possible under the weight-bearing demands of a terrestrial environment. *bioRxiv*. 2019 Mar 11:571612.
4. Young MB. Investigating the Evolution of the Scapula and Pelvis via Developmental Genetics (Doctoral dissertation).
5. GLADSTONE R, BARCLAY-SMITH E. Anatomical Society of Great Britain and Ireland.
6. Eden TW conducted a study on the physiological and pathological aspects of the human placenta. *J. Pathol. Bacteriol.* 1897;4:265-83.

7. Adams RA, Thibault KM. 2000. Ontogeny and evolution of the hindlimb and calcar: assessing phylogenetic trends. *Ontogeny, Functional Ecology, and Evolution of Bats* 10:316–332. DOI: <https://doi.org/10.1017/CBO9780511541872.010>

8. Alexander RM published a study in 1985 on the mechanics of posture and gait in some large dinosaurs. *Zoological Journal of the Linnean Society* 83:1–25. DOI: <https://doi.org/10.1111/j.1096-3642.1985.tb00871.x>

9. Anderson JF, Hall-Martin A, and Russell DA conducted a study in 1985 on the measurement of long-bone circumference and weight in mammals, birds, and dinosaurs. *Journal of Zoology* 207:53–61. DOI: <https://doi.org/10.1111/j.1469-7998.1985.tb04915.x>

10. Ashley-Ross, M. 1994. Hindlimb kinematics during terrestrial locomotion in a salamander (*Dicamptodon tenebrosus*). *The Journal of Experimental Biology* 193:255–283. PMID: 9317755

11. Barreto C, Albrecht RM, Bjorling DE, Horner JR, Wilsman NJ. 1993. Barreto C, Albrecht RM, Bjorling DE, Horner JR, and Wilsman NJ provide evidence of the growth plate and the growth of long bones in juvenile dinosaurs. *Science* 262:2020–2023. DOI: <https://doi.org/10.1126/science.262.5142>. 2020, PMID: 17794968

12. Bassett JH, Williams GR. 2016. Thyroid hormones play a crucial role in skeletal development and bone maintenance. *Endocrine Reviews* 37:135–187. DOI: <https://doi.org/10.1210/er.2015-1106>, PMID: 26862888

13. Biewener AA, Thomason J, Goodship A, Lanyon LE. 1983. Bone stress in the horse's forelimb during locomotion at different gaits: a comparison of two experimental methods. *Journal of Biomechanics* 16:565–576. DOI: [https://doi.org/10.1016/0021-9290\(83\)90107-0](https://doi.org/10.1016/0021-9290(83)90107-0), PMID: 6643529

14. Biewener AA, Thomason JJ, Lanyon LE. 1988. Mechanics of locomotion and jumping in the horse (*Equus*): in vivo stress in the tibia and metatarsus. *Journal of Zoology* 214:547–565. DOI: <https://doi.org/10.1111/j.1469-7998.1988.tb03759.x>

15. Biewener AA. 1989. Scaling body support in mammals: limb posture and muscle mechanics. *Science* 245:45–48. DOI: <https://doi.org/10.1126/science.2740914>, PMID: 2740914

17. Biewener AA. 1990. Biomechanics of mammalian terrestrial locomotion. *Science* 250:1097–1103. DOI: <https://doi.org/10.1126/science.2251499>, PMID: 2251499

18. Biewener AA. 2005. Biomechanical consequences of scaling. *Journal of Experimental Biology* 208:1665–1676. DOI: <https://doi.org/10.1242/jeb.01520>, PMID: 1585539