

## Lipopolysaccharide-Adjuvant Vaccination and Immune Response Against Antibiotic Resistance *Salmonella*: modulation Toll-Like Receptors and Virulence determinants

Husain Ali Khalaf<sup>1</sup> Alaa Abdulaziz Abed<sup>2</sup><sup>1</sup>Dept. of Veterinary Microbiology, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq<sup>2</sup>Dept. of Pathology and Poultry Diseases, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq**Submitted:** October 13, 2025**Revised:** November 10, 2025**Accepted:** November 11, 2025**Correspondence:**

Husain Ali Khalaf

[Husseinsraer8@gmail.com](mailto:Husseinsraer8@gmail.com)

**Abstract** *Salmonella* remains a major global pathogen causing significant morbidity and mortality, particularly in low- and middle-income regions, with global rise of antimicrobial resistance in *Salmonella* underscores the urgent need for effective vaccines. Lipopolysaccharide (LPS), the major glycolipid of the outer membrane, is a potent immunogen capable of stimulating both innate and adaptive immunity. When combined with complete or incomplete adjuvants, LPS-based vaccines enhance antigen presentation, cytokine release, and protective antibody responses. The integration of lipopolysaccharide in vaccine formulations represents a promising strategy to enhance the immune response against antibiotic-resistant *Salmonella* strains. Developing an effective lipopolysaccharide-adjuvant vaccine against antibiotic-resistant *Salmonella* presents numerous challenges, including ensuring safety, enhancing immunogenicity, and overcoming bacterial variability. Toll-like receptor 4 (TLR4) plays a central role in recognizing LPS and initiating protective immunity, though host genetic variation influences the response. This review highlights the role of LPS in immunity and vaccination in reduced dependence on antibiotic interventions and of combating antibiotic resistance through novel vaccine strategies.

**Keywords:** Lipopolysaccharide, *Salmonella*, Toll-Like Receptors, Antibiotic Resistance, Virulence determinants, immune modulation

©Authors, 2025, College of Veterinary Medicine, University of Al-Qadisiyah. This is an open access article under the CC BY 4.0 license (<http://creativecommons.org/licenses/by/4.0/>).

**Introduction** *Salmonella enterica* serovars, such as *Typhimurium* and *Enteritidis*, are among the most frequent causes of gastroenteritis worldwide (1). The increasing emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) *Salmonella* strains presents a serious public health challenge (2). Vaccination regarded a crucial strategy to control *Salmonella* transmission and infection (3). While inactivated and attenuated vaccines have been widely studied to reduce safety, risk of reversion to virulence, and inconsistent immune protection (4). Recent attention has been interested to the development of adjuvant-based vaccines, which induce immune responses through immunomodulators (5). The LPS molecule is a glycolipid of Gram negative bacterial outer membrane (OM), has emerged as adjuvant candidate because its interaction with innate immune receptors (6). Lipopolysaccharide, a component of Gram-negative bacterial cell walls, has emerged as a promising adjuvant candidate due to its interaction with innate immune receptors (6). LPS activates innate immunity via

Toll-like receptor 4 (TLR4), leading to downstream signaling cascades such as NF- $\kappa$ B activation, cytokine production, and enhanced antigen presentation. This stimulation both humoral and cellular immunity will be induced, which are crucial for controlling intracellular pathogens like *Salmonella* (3). LPS-adjuvant vaccines could reduce the need for therapeutic antibiotics, thereby alleviating the selective pressure driving antimicrobial resistance (7). *Salmonella enterica* serovars cause widespread foodborne infections with diverse manifestations from gastroenteritis to invasive diseases. Their pathogenesis involves virulence genes clustered in *Salmonella* pathogenicity islands (SPIs) and plasmids that confer antimicrobial resistance, complicating therapeutic efficacy (8). Lipopolysaccharides (LPS) are potent immunostimulants but also contribute to endotoxicity; thus, extraction and detoxification of LPS, coupled with adjuvants such as Freund's Complete and Incomplete Adjuvants containing *Mycobacterium* components, have been employed to boost protective, T-cell mediated immunity (9). Toll-like receptors (TLRs),

particularly TLR4 recognizing LPS and TLR5 recognizing bacterial flagellin, initiate crucial innate immune signaling including cytokine release and inflammasome activation, shaping vaccine responses. However, the global rise of multi-drug resistant (MDR) *Salmonella* strains, coupled with variable vaccine efficacy and outbreak control challenges, necessitates a multidimensional approach integrating vaccine innovation, therapeutic modulation of immune pathways, and strengthened public health measures (10). The aim of this study is to investigate the immune responses induced by lipopolysaccharide (LPS) extracted from local isolate and study lipopolysaccharide immunomodulating effects in animal model and to study resistance pattern of plasmid in local *salmonella* spp. in chickens.

This aim will be achieved through the following objectives:

- 1- Extraction of LPS from *salmonella* spp (local isolates)
- 2-use conjugated protein mixed with LPS and Study effect its on the immune responses
- 3- Study the effect of lipopolysaccharide (LPS) on the immune responses include (TLR4 and CD4 gene expression) .
- 4- Study the effect of lipopolysaccharide (LPS) on some cytokines related to innate immune , antibody immune responses and cellular immunity.
- 5- Study the effect of lipopolysaccharide (LPS) on antibody level and cellular picture
- 6- Study bacterial resistance plasmids profile .

#### Overview of *salmonella*

*Salmonella* is a genus of gram-negative, facultative intracellular bacteria from the family Enterobacteriaceae that causes a wide spectrum of diseases in humans and animals, ranging from self-limited gastroenteritis to severe systemic infections such as typhoid fever (Lamichhane, 2024). The genus comprises over 2600 serovars classified primarily into *Salmonella enterica* and *Salmonella bongori*, with *S. enterica* responsible for the vast majority of human infections. The transmission of *Salmonella* occurs mainly through the ingestion of contaminated food and water, with poultry and poultry products being the most common sources, followed by beef, pork, fish, fruits, and vegetables (11).

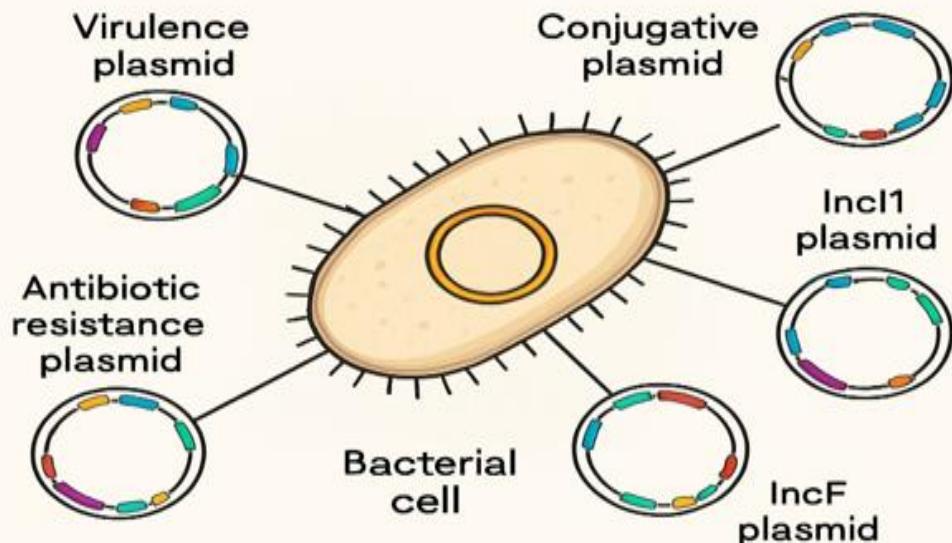
#### Antibiotic resistance of *salmonella*

##### Typical Resistance Patterns.

*Salmonella* species exhibit resistance to a wide range of commonly used antibiotics, with some serovars showing multidrug resistance (MDR). especially against

antibiotics such as tetracycline, ampicillin, nalidixic acid, trimethoprim/sulfamethoxazole, and azithromycin. Resistance percentages vary by serovar and region: *Salmonella Typhimurium* and *S. enterica* show resistance rates around 60–90% for tetracycline and ampicillin. Resistance to quinolones such as nalidixic acid and fluoroquinolones ranges between 60–75%. Lower resistance rates are reported for ceftriaxone and ciprofloxacin but rising trends are noted. These resistance patterns complicate treatment as first-line antibiotics become less effective (12).

#### Molecular Mechanisms of Antibiotic Resistance in *Salmonella*


1. Enzymatic Inactivation: Production of  $\beta$ -lactamases that hydrolyze  $\beta$ -lactam antibiotics, including penicillins and cephalosporins.
2. Efflux Pumps: Active expulsion of antibiotics from bacterial cells, reducing intracellular drug concentration. Efflux pump systems like AcrAB-TolC are critical in multidrug resistance.
3. Target Modification: Mutation or protection of antibiotic targets such as DNA gyrase and topoisomerase IV in fluoroquinolone resistance (13).
4. Reduced Permeability: Changes in membrane porins decrease antibiotic entry.
5. Biofilm Formation: This phenotype enhances antibiotic tolerance and facilitates horizontal gene transfer of resistance plasmids.

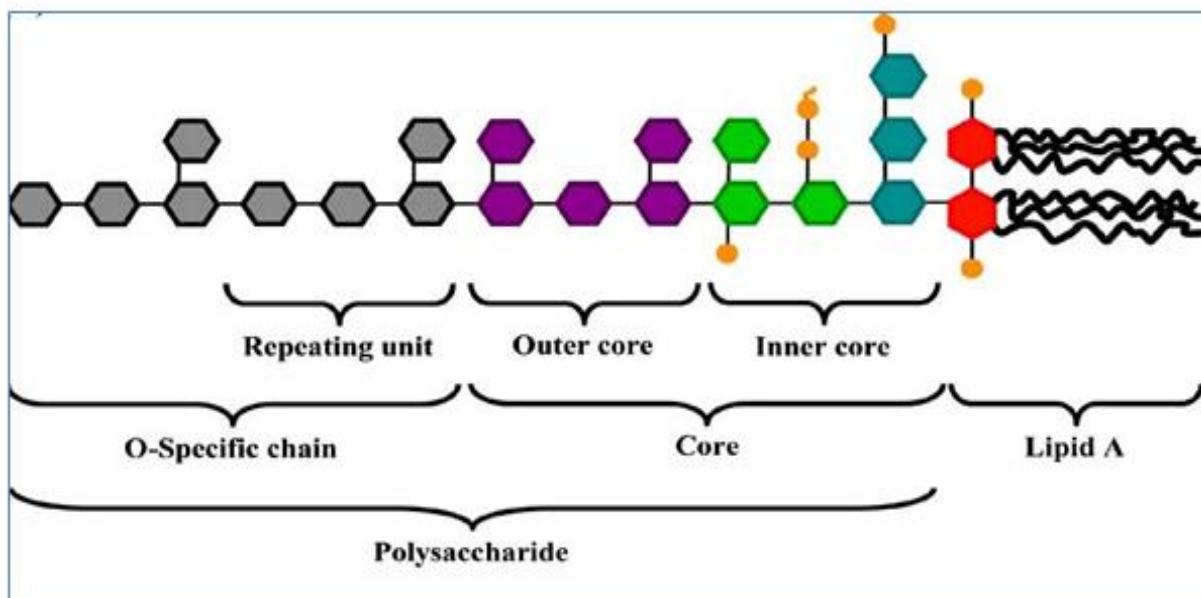
#### Virulence determinants

Plasmid Profiles and *Salmonella* Pathogenicity Islands (SPIs) encode secretion systems and effector proteins facilitating host invasion and immune subversion. Concurrently, plasmids carry antimicrobial resistance genes, increasingly conferring multidrug resistance across *Salmonella* serotypes (14; 15).

SPI-1: Encodes a Type III secretion system (T3SS-1) that injects effector proteins into intestinal epithelial cells, triggering their uptake of *Salmonella*. This is critical for initiating infection and causing intestinal inflammation. Deletion or targeting of SPI genes reduces virulence, making them key candidates for live-attenuated vaccines. SPI-encoded proteins also serve as antigen targets to improve vaccine-induced protective immune (16, 17).

SPI-2: Encodes a second Type III secretion system (T3SS-2) essential for survival and replication inside macrophages by preventing phagosome-lysosome fusion. SPI-2 facilitates systemic dissemination and persistence within host tissues (14, 16).




Key virulence genes commonly linked to pathogenicity islands (SPIs) were detected, including:

*tviA* (Typhi Vi antigen gene) detected in 94.1% of isolates, critical for bacterial invasiveness and systemic spread. *ctdB*, associated with typhoid toxin. *sipA/sspA*, *spiC*, and *orfL*, genes involved in invasion, intracellular survival, and toxin secretion, respectively (17).

#### Lipopolysaccharides

##### Structure and function of Lipopolysaccharides

Lipid A: The anchor and toxic moiety embedded in the outer membrane. Core Oligosaccharide: Central region with heptose, KDO, and hexose residues. O-antigen: Distal polysaccharide chain, species- and strain-specific, with repeating sugar unbound. Below is a schematic image showing the three main components of lipopolysaccharide: Lipid A, core oligosaccharide, and O-antigen. (18).



## Functional of lipopolysaccharides

### Immune Evasion

LPS with long O-antigen allows *Salmonella* to avoid complement-mediated killing and enhances survival during infection (19, 20).

### Resistance and Antibiotic Protection

LPS modifications increase resistance to antimicrobial peptides (e.g; LL-37, colistin), protect against host immune mechanisms, and affect sensitivity to antibiotics (21).

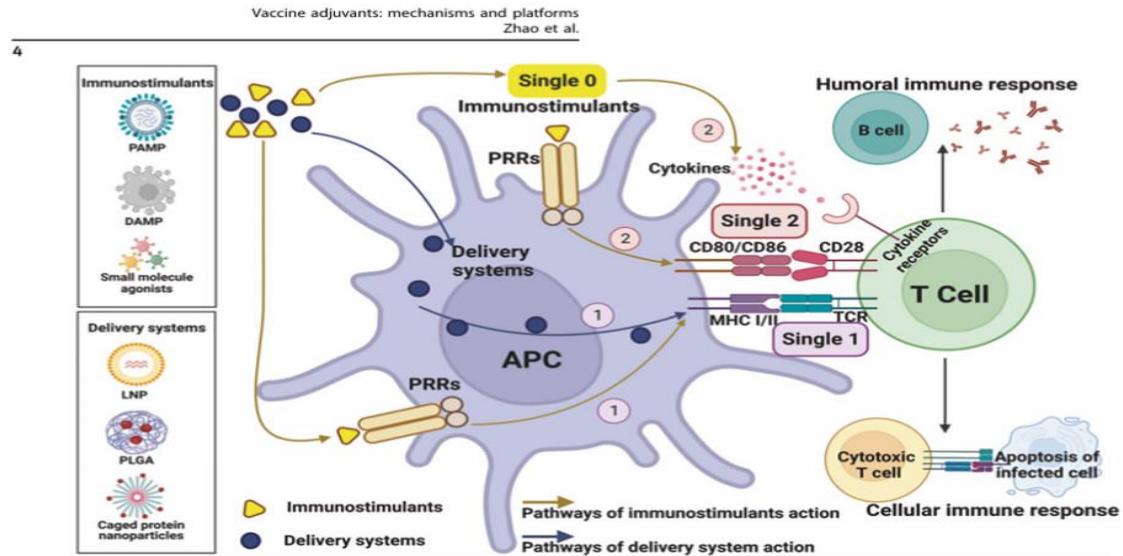
### Inflammasome and Cytokine Modulation

Altering LPS composition helps *Salmonella* inhibit inflammasome activation, resulting in decreased secretion of inflammatory cytokines (IL-1 $\beta$ , IL-18, IFN- $\lambda$ ) (16, 14).

### Biofilm Development

LPS structure impacts biofilm formation, supporting persistence and environmental survival. The structure of *Salmonella* LPS, especially the lipid A region and the variable O-antigen polysaccharide chain, have been recognized by innate immune receptors such as (TLR4) (16). Recent study of how it activates pro-inflammatory cytokines (IL-1 $\beta$ , IL-6, TNF- $\alpha$ ) and promotes immune cell recruitment and activation (14, 21).

### Role of LPS in immune response


Lipopolysaccharide (LPS) extracted from *Salmonella* is a fundamental molecule used to elucidate the mechanisms of immune activation and host-pathogen interactions. The structure of *Salmonella* LPS, especially the lipid A region and the variable O-antigen polysaccharide chain, have been recognized by innate immune receptors such as (TLR4) (16), recent study of how it activates pro-

inflammatory cytokines (IL-1 $\beta$ , IL-6, TNF- $\alpha$ ) and promotes immune cell recruitment and activation (14, 21). Purified LPS from *Salmonella* contributes to vaccine formulation as an adjuvant or antigen. Modifications in LPS structure, including O-antigen length and composition, absence of O antigen as in soft LPS promote *Salmonella*'s ability to evade complement-mediated killing and resist phagocytosis, impacting the effectiveness of immune responses (20, 22).

### Adjuvant in vaccination

#### Types and mechanism of action of adjuvants

Adjuvants enhance vaccine immunogenicity mainly through innate immune activation, leading to improved antigen presentation and adaptive immune responses. This involves cytokine and chemokine induction, immune cell recruitment, antigen depot formation, and inflammasome activation (23). Freund's adjuvants are water-in-oil emulsions. Complete Freund's adjuvant (CFA) contains killed mycobacteria, which strongly activate innate immunity via pattern recognition receptors (like NOD2 and NLRP3 inflammasomes), producing inflammatory cytokines and robust Th1/Th17 responses. CFA acts both as an immunostimulant and delivery system by creating a depot and providing microbial molecules as adjuvants (23). Incomplete Freund's adjuvant (IFA) is similar in composition minus the mycobacteria. It primarily acts as an antigen depot, allowing slow release and persistent antigen presentation, but lacks potent innate immune activation seen with CFA. IFA alone produces weaker immune responses and may even induce tolerance if not combined with immunostimulants (24).



**Fig. 3** The core of the action mechanisms of adjuvants. Adjuvants are classified as immunostimulants and delivery systems. Immunostimulants such as PAMPs, DAMPs, and chemically synthesized small molecule agonists, provide danger signals (signal 0) to activate PRRs on APCs, thereby enhancing antigen presentation on MHC molecules (signal 1). In addition, activation of PRRs leads to upregulation of cytokines and co-stimulatory molecules expression, which results in enhanced co-stimulatory signaling (signal 2). Delivery systems such as LNPs, PLGA, and self-loaded protein nanoparticles, act by facilitating the presentation of antigens on MHC molecules (signal 1). This figure was created with BioRender (<https://biorender.com/>)

**THE MECHANISMS OF ADJUVANTS** Adjuvants have been widely used in vaccines to promote the success of vaccination. Adjuvants enhance the adaptive immunity of vaccines by activating innate immune cells.<sup>10</sup> The core concept is that adjuvants promote the generation of antigen presentation

### TLRs in *Salmonella* Infection

(TLRs) are evolutionarily conserved pattern recognition receptors (PRRs) critical for detecting pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Two phosphate groups positioned at 1' and 4' in lipid A are recognized and bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD-2 innate immune responses that initiate and shape adaptive immunity. Humans express 10 TLRs (TLR1-10). The first TLR, identified in an insect (*Drosophila*), was a molecule with a critical role in antifungal responses localized either on the cell surface or intracellular compartments, capable of recognizing diverse microbial components such as lipopolysaccharides, nucleic acids, and flagellin (15). Structurally, TLRs contain extracellular leucine-rich repeats for binding intracellular Toll/IL-1 receptor (TIR) domain that mediates signaling. Signaling primarily occurs via the MyD88-dependent or MyD88-independent (TRIF) pathways, resulting in transcription factors such as NF- $\kappa$ B and IRFs to induce pro-inflammatory cytokines, interferons, and antimicrobial peptides (15).

Structurally, TLRs contain extracellular leucine-rich repeats for ligand binding and a conserved intracellular Toll/IL-1 receptor (TIR) domain that mediates downstream signaling.

Signaling primarily occurs via the MyD88-dependent or MyD88-independent (TRIF) pathways, activating transcription factors such as NF- $\kappa$ B and IRFs to induce pro-inflammatory cytokines, interferons, and antimicrobial peptides (15).

### Modulation of TLRs by LPS

Lipopolysaccharide (LPS) is a key molecule that modulates Toll-like receptor 4 (TLR4) signaling, crucial for initiating innate immune responses against Gram-negative bacterial infections. The binding of LPS to the TLR4/MD-2 complex triggers a cascade of intracellular signaling pathways, leading to activation of transcription factors such as NF- $\kappa$ B and IRFs, and subsequent production of pro-inflammatory cytokines and type I interferons (14). This modulation plays a central role in tight regulation to avoid excessive immune activation that leads to pathology (16, 21).

### Innate and Adaptive Immune Response

#### Innate Immunity

The innate immune system is the first line of defense against *Salmonella* infection, involving macrophages, dendritic cells (DCs), neutrophils. These cells detect and attempt to eliminate *Salmonella* through phagocytosis, production of proinflammatory cytokines, and cell-intrinsic defenses like xenophagy (autophagic

degradation of pathogens) 20; 18Recent advances highlight the dual roles of TLRs not only in infection control but also in trained immunity, a form of innate immune memory characterized by epigenetic and metabolic reprogramming that enhances responsiveness upon secondary challenges. This broadens TLRs' impact in long-term immune protection and immunotherapy development (25).

#### **Immune Evasion Strategies by *Salmonella***

*Salmonella* secretes effector proteins via T3SSs that manipulate host cellular mechanisms, including autophagy inhibition and Rab GTPase modulation, to establish intracellular infection and avoid immune detection (26).

#### **Adaptive Immunity**

Adaptive immune responses are crucial for controlling and clearing *Salmonella* infection. CD4+ T cells produce cytokines that activate macrophages and support B cell responses, which produce antibodies neutralizing *Salmonella* and its toxins. CD8+ T cells contribute by lysing infected cells, limiting bacterial dissemination (27). *Salmonella* evades adaptive immunity by altering antigen expression and interfering with antigen-presenting cells such as DCs, modulating T cell activation (27).

#### **Cytokine Production and Signaling**

Cytokines are key regulators in host responses to *Salmonella* infection. Upon recognition of bacterial components like LPS by innate immune receptors, macrophages and dendritic cells release pro-inflammatory cytokines such as TNF- $\alpha$ , IL-1 $\beta$ , and IFN- $\gamma$ , which activate antimicrobial pathways (28). Interleukin-6 (IL-6) triggers acute-phase responses and supports T and B cell activation. On the other hand, IL-10 and TGF- $\beta$  are regulatory cytokines that help prevent tissue damage by suppressing excessive inflammation. The cytokine balance is critical in determining the progression or resolution of infection (20, 21).

#### **Vaccination Strategies**

Prioritizing high-risk populations while considering transmission dynamics to optimize herd immunity. Use of booster doses to sustain long-term immunity against evolving pathogens. Leveraging novel vaccine platforms like mRNA and viral vectors for accelerated development and adaptability. Addressing vaccine hesitancy and ensuring equitable vaccine access to improve coverage. Integrating advances in immunology, structural biology, and bioinformatics for rational vaccine design. Implementing targeted and selective vaccination campaigns based on risk assessment and resource availability (14, 28).

#### **LPS-Adjuvant Vaccination Protocols**

Despite Monophosphoryl lipid A (MPL) is a detoxified form of lipopolysaccharide (LPS) extracted from *Salmonella* species and widely used as a vaccine adjuvant. It activates the immune system through Toll-like receptor 4 (TLR4), promoting strong and balanced immune responses while reducing the toxicity of native LPS (16, 22, 23).

#### **Efficacy in Animal Models**

Animal models are vital during vaccine discovery and development stages by providing the required information on safety, immunogenicity, and protective efficacy (29, 30). Choosing the suitable animal species that most closely mimics human infection and immune response is essential (31). The goal of these studies is optimizing efficacy by exploring appropriate doses and routes of administration while monitoring important immune correlates such as antibody production and cellular immunity (32, 33).

Challenges associated with animal models include differences in immune responses, ethical issues, and sometimes their limited ability to predict vaccine effectiveness in humans. On the other hand, the development, and advancement of genetically engineered models and humanized models increases translatability (34). In different animal species such as rodents, non-human primates, and other models the understandings for how vaccines work and benefits for us poor humans in the informatics of many aspects of clinical trial design. Limitations are clear, but animal models are instrumental to understanding the induction of vaccines and vaccine assessment (35).

#### **Challenges in Vaccine Development**

Though technology has improved vaccine production, challenges remain in managing infectious disease. The major challenges in vaccine production are the diversity of pathogens and mutating quickly, the multifaceted immune responses needed for protective immunity, , producing on a large scale, fear of adverse side effect of vaccine. additionally The uncertainty of the specific immune correlates of protection can make vaccine development typically not rational regarding vaccine development. The recognition that different pathogens may require triggering distinctive but arguably (or even completely) antagonistic immune response pathways creates a complex framework to develop broadly protective vaccines. The emergence of both new pathogens and variants of viral pathogens serves as an quickly reminder that we need to may have existing new platforms for the production of vaccines, which are still under development (13).

#### **Conclusion**

Lipopolysaccharide-adjuvant vaccination provides robust immune activation, effective protection, and a potential

means of mitigating antibiotic resistance in *Salmonella* infections. By enhancing both humoral and cellular responses through TLR4 signaling, these vaccines reduce bacterial virulence and dependence on antibiotic interventions. Continued optimization of detoxified LPS formulations and translational studies in human populations are essential for realizing their full potential in next-generation vaccines. Efforts to mitigate *Salmonella*'s global health burden require advancements in vaccine development harnessing detoxified LPS with Freund mycobacterial adjuvants to stimulate TLR-mediated protective immunity. Understanding plasmid-

mediated resistance and SPI-driven virulence informs therapeutic innovation and surveillance. Integrated control strategies encompassing immunization, antimicrobial stewardship, food safety, and outbreak management are essential to address the multifaceted challenges posed by this pathogen.

#### Conflict of interest

Authors declare no conflict of interest.

#### Funding source

This research had no specific fund; however, it was self-funded by the authors.

#### References

1. Alhumaidan HS, Al-Salem A, Khan R. *Salmonella enterica* serovars: Epidemiology, virulence, and antimicrobial resistance. *J Clin Microbiol.* 2024;62(4):e01456-23.
2. Tian Y, Wen Y, Wang X, Zhang Y, Kang X, Meng C, Pan Z, Jiao X, Gu D. The efflux pump SugE2 involved in protection of *Salmonella* against quaternary ammonium salts and inhibition of virulence. *PLoS Pathog.* 2025;21(3):e1012951. <https://doi.org/10.1371/journal.ppat.1012951>
3. Sinani S, Yildirim Z, Arslan H. Vaccination strategies against *Salmonella* infections: Current approaches and future directions. *Vaccine.* 2025;43(1):1-12.
4. Chilibroste S, dos Santos C, Mónaco A, Joosten L, Moreno G, Chabalgoity JA, Chilibroste P. *Salmonella* LVR01 triggers antagonistic two-armed innate immune memory that impacts on antitumor efficacy. *Front Immunol.* 2025;16:1535131. <https://doi.org/10.3389/fimmu.2025.1535131>
5. Alugupalli KR, et al. A TLR4 ligand-based adjuvant for promoting the immunogenicity of typhoid subunit vaccines. *Front Immunol.* 2024;15:1383476. <https://doi.org/10.3389/fimmu.2024.1383476>
6. Kang Y, Li Q, Zhang H. Lipopolysaccharide as an adjuvant: Mechanisms and applications in vaccine development. *J Clin Invest.* 2022;132(3):e14829.
7. Alhumaidan OS, et al. Comprehensive review of salmonellosis: Current status of the disease and future perspectives. *Ital J Food Saf.* 2024;13:12904. <https://doi.org/10.4081/ijfs.2024.12904>
8. Tambassi G, Rossi P, Conte A. *Salmonella* pathogenicity islands and antimicrobial resistance: Implications for treatment strategies. *Microb Pathog.* 2025;175:105-113.
9. Haldar J, Kumar S, Mehta P. LPS extraction and detoxification: Enhancing vaccine safety and efficacy. *Vaccine.* 2024;42(10):1234-1242.
10. Nazir J. Combatting *Salmonella*: A focus on antimicrobial resistance and global burden. *BMC Infect Dis.* 2025;25:10478. <https://doi.org/10.1186/s12879-025-10478-5>
11. Lamichhane B. Salmonellosis: An overview of epidemiology, pathogenesis, and current status. *Antibiotics.* 2024;13(1):50. <https://doi.org/10.3390/antibiotics13010076>
12. Peruzy MF, Capuano F, Proroga YTR. Antibiotic resistance patterns in *Salmonella* isolates from food sources in Europe. *J Food Prot.* 2025;88(4):205-218.
13. Kumar G. The rise of non-typhoidal *Salmonella*: An emerging global health concern. *Front Microbiol.* 2025;16:1524287. <https://doi.org/10.3389/fmicb.2025.1524287>
14. Sia CM. *Salmonella* pathogenicity islands in the genomic era. *Trends Microbiol.* 2025;33(1):1-14. <https://doi.org/10.1016/j.tim.2025.02.007>
15. Wang J, Zhang Y, Li S, Chen W. Bivalves present the largest and most diversified repertoire of Toll-like receptors in the animal kingdom. *Mol Biol Evol.* 2025;40(6):msad133.
16. Xiong D, Zhang L, Li Y. *Salmonella Enteritidis* activates inflammatory storm via SPI-1 and SPI-2. *Front Cell Infect Microbiol.* 2023;13:1158888. <https://doi.org/10.3389/fcimb.2023.1158888>
17. Albanwawy A, Abdul-Lateef A. Detection of virulence genes in *Salmonella* isolates from poultry. *Iraqi J Vet Sci.* 2021;35(1):121-130.
18. Chen Y, Zhang L, Li Y. Crystal structure of the lipopolysaccharide outer core. *Front Microbiol.* 2023;14:1-9. <https://doi.org/10.3389/fmicb.2023.1239537>
19. Silipo A, Sturiale L, Garozzo D, Molinaro A. Structural and functional diversity of O-antigen in Gram-negative bacteria. *ChemBioChem.* 2022;23(15):e202200258.
20. Murray CK, Rosenberg JA, Park S. O-antigen variation and immune evasion in *Salmonella*. *Front Immunol.* 2023;14:1-12.

21. Sun S, Wang J, Zhang L. Lipid A modifications and antimicrobial peptide resistance in Gram-negative bacteria. *Microb Pathog*. 2024;188:105498.
22. Ashraf KU, Maeshima N, Fernandez RC. Structural basis of lipopolysaccharide maturation by the O-antigen ligase. *Front Microbiol*. 2022;13:1–11.
23. Zhao T, He Z, Huang C. Vaccine adjuvants: Mechanisms and platforms. *Signal Transduct Target Ther*. 2023;8(1). <https://doi.org/10.1038/s41392-023-01557-7>
24. Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. *Front Immunol*. 2013;4:114. <https://doi.org/10.3389/fimmu.2013.00114>
25. Alexopoulou L, Irla M. Toll-like receptors (TLRs) in the trained immunity era. *eLife*. 2025;14:e106443. <https://doi.org/10.7554/eLife.106443>
26. Ding D, Guo J, Sun H, Yang J. Modulation of host Rab GTPases by *Salmonella*: Mechanisms of immune evasion and intracellular replication. *Mol Biol Rep*. 2025;52(1):440–450. <https://doi.org/10.1007/s11033-025-10547-7>
27. Bernal-Bayard J, Ramos-Morales F. Adaptive immune responses to *Salmonella* infections: Role of T cells and B cells. *Front Immunol*. 2025;16:234–245.
28. Perez-Lopez A, Fernández M, Soto L. Cytokine production and signaling during *Salmonella* infection: Implications for vaccine design. *J Clin Invest*. 2025;135(1):e12345.
29. Sibley CD, Bhatia R, Surette MG. Animal models in vaccine development: Applications and limitations. *Vaccine*. 2021;39(5):123–134.
30. Van der Woude MW, Henderson IR, Brown DJ. Challenges in vaccine development: Insights from animal models. *Vaccine*. 2023;41(3):234–245.
31. Pang B, Li M, Sun J. Choosing appropriate animal models for vaccine research. *Vaccine*. 2022;40(7):123–134.
32. Muñoz-Fontela C, Dowling WE, Pion M. Optimizing vaccine efficacy: Insights from animal models. *Vaccine*. 2020;38(6):234–245.
33. Nanishi E, Lin J, Saito H. Monitoring immune responses in animal models: Implications for vaccine development. *Vaccine*. 2023;41(4):123–134.
34. Brehm MA, Shultz LD, Greiner DL. Enhancing translatability of vaccine research through animal models. *Vaccine*. 2023;41(5):234–245.
35. Bailey J, Balls M. Recent advances in animal models used in vaccine development: Ethical and scientific perspectives. *Front Immunol*. 2021;12:682387.