

Biomarker-Based Evaluation and Molecular Identification with Phylogenetic Analysis of *Echinococcus granulosus* from Liver Samples of Sheep and Goats in Al-Qadisiyah Province, Iraq

Mohsen Habeb Chead Monyer Abdulamier Abd Alfatlawi

Department of Veterinary Microbiology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah City, Iraq

Submitted: January 14, 2025

Revised: January 24, 2025

Accepted: January 24, 2025

Abstract Hydatid disease caused by *Echinococcus granulosus* is an important zoonotic disease for livestock health and economy in endemic areas such as Iraq. The study aimed at molecularly isolating *E. granulosus* from sheep and goats and use cytokine biomarkers to determine patterns of immune responses in infected hosts. There were 150 liver samples from sheep (n=75) and goats (n=75) from an abattoir located in Al-Diwaniyah city, Iraq. The 18S rRNA gene was amplified by PCR. PCR products were sequenced, and the phylogenetic analyses were done to establish genetic variation and evolutionary relationships. For biomarker analysis, the cytokines IL-4 and IL-10 were measured with ELISA. The results verified the presence of *E. granulosus* in all the infected samples. Phylogenetic analysis identified genetic sub-groups within local isolates and regional genetic diversity. Cytokine measurements indicated significantly high IL-10 levels in the animals, especially those with more severe infections, which indicates an anti-inflammatory response. IL-4, by contrast, was variable based on host immune modulation. It explains in detail the molecular and immunological nature of *E. granulosus* disease in sheep and goats. This combination of phylogenetic and biomarker profiling makes region-specific diagnosis and immune test critical. These discoveries will lead to better diagnostic and management methods for hydatid disease in endemic areas for improved veterinary medicine and economic sustainability.

Keywords: Biomarkers, Cytokines, ELISA, PCR, Phylogenetics

©Authors, 2025, College of Veterinary Medicine, University of Al-Qadisyah. This is an open access article under the CC BY 4.0 license (<http://creativecommons.org/licenses/by/4.0/>).

Introduction *Echinococcus granulosus*, also known as the unilocular hydatid, is a tapeworm responsible for echinococcosis. Echinococcosis is a parasitic disease with significant public health implications that predominantly affects humans and animals (1, 2). The life cycle of the parasitic organism was declared in the early 1920s: definitively, it needs a carnivore to host the adult stage, whereas the larval stage grows into an intermediate host. In humans, the larval stage may cause disease as metacestodes or hydatid cysts, for which the clinical aspects are related to localization, size, and growth in the host organism (3). The resistance of the outer layer of the hydatid cyst, called a "germinal layer," allows the elimination of light and nonspecific host immune response, among others. In addition, *E. granulosus* may be responsible for providing a significant financial impact since it

involves livestock animals in the life cycle and the cystic lesions reduce organ and carcass values. Transmission to humans is mainly due to poor hygiene practices, such as close contact with infected canines and eating food contaminated with the eggs (4). largely based on some cyclic outbreaks of cystic echinococcosis that were characterized in Mediterranean countries. So far, research and control programs have focused on the interaction between humans, carnivores, and rodents in wild or domestic environments, to find new strategies for personal protection and reduction of infection. Up to now, only the observation of a strict worldwide circulation is possible, and the availability of new diagnostic tools for both human and animal hosts can provide more details concerning everyday transmission (5-9).

The disease is globally distributed and mostly found in regions with pastoral communities depending on livestock agriculture. Livestock species such as cattle, sheep, goats, equids, swine, and camels act as intermediate hosts. The highest prevalence of *E. granulosus* has been reported from Central Asia and North and East Africa. Hydatid cysts cause liver condemnation, resulting in huge economic losses to livestock owners (10, 11). Many factors contribute to the continuation of active transmission of *E. granulosus*: social customs around slaughtering, improper waste disposal, poor livestock management, and socio-economic conditions. Male and markedly more female animals harbor active cysts. Effective transmission by predators and intermediate hosts is required for the persistence of the *E. granulosus* lifecycle. Dogs are the definitive host of *E. granulosus*, while herbivorous and omnivorous mammals are frequently infected by ingesting *Echinococcus* eggs in the contaminated environment (12, 13).

Desert and less developed societies in remote underprivileged locations, where discarded dog fecal matter is not properly addressed and living with dogs is common, remain at higher risk of transmission of *E. granulosus* infection. Intermittent prevalence and incidence of echinococcosis have been reported from previously free areas as well as variable rates of infection among farm community subpopulations. A vast array of risk factors associated with echinococcosis may be directly related to exposure risk, such as proximity to domestic and/or stray dogs, uncontrolled access of wild dogs to slaughter fields, lack of hygiene and handwashing practices, in addition to risk factors related to underlying social, educational, and cultural factors (14).

Humans become intermediate hosts, especially in parts of the world where dogs have a relationship with the household, as well as with human handling of livestock and a lack of appropriate infrastructure to separate the environment where definitive hosts, mainly dogs, roam. The lifecycle of *E. granulosus* starts

Materials and methods

Ethical approval

The study was conducted based on the Ethical Approval issued by the College of Veterinary Medicine, University of Al-Qadisiyah, Iraq (1111 on Oct 22, 2023).

Samples collection

and ends in the intestine of canids, while intermediate hosts are principally herbivorous domestic animals or wild mammals, but humans may also be an accidental intermediate host. The main natural intermediate wildlife hosts of *E. granulosus* are rabbits, rodents, and ungulates (15, 16). The lifespan of the adult worms in the definitive host is 5 to 15 years and is by far longer in wild carnivore hosts. Adult worms may produce thousands of eggs each day (17,18).

Appropriate management at slaughterhouses to standardize and make hygienic the handling of infected animal viscera is important, as well as potential risk interventions aimed at educating the operators of breeding activities in the abattoir and communicating this risk to local institutional subjects. Public health governance, to prevent human infection, should therefore be based on legislative measures that prioritize the eradication of canine transmission by improving the control of free-running dogs in rural areas (19, 20).

Serological tests, diagnostic tests based on imaging, and surgical and post-mortem findings are useful to diagnose echinococcal infections; however, standardized tests are not available. A variety of serologic tests are available for the immunodiagnosis of echinococcosis, such as indirect hemagglutination, immunoelectrophoresis, and ELISA, which presented a range of sensitivity from 42.0% to 100% and a specificity from 91.4% to 100% (21-23).

Research efforts should aim at improving serological, immunological, and molecular diagnostic techniques, estimating the real burden of the SP, and developing tools that allow for the rapid diagnosis of children who are asymptotically infected. While some serological tests are used as routine diagnostic tools, they have been less successful in detecting early *E. granulosus* infections (24-26).

The study aimed at molecularly isolating *E. granulosus* from sheep and goats and use cytokine biomarkers to determine patterns of immune responses in infected hosts.

From sheep (n=75) and goats (n=75) slaughtered in an abattoir in Al-Diwaniyah City, Iraq between September 2022 and May 2023, 150 liver samples were collected. They picked animals of all ages, sexes and ailments. Tests were taken at aseptic temperature immediately after slaughter and brought iced on board to the College of Veterinary Medicine, University of Al-Qadisiyah, where they were analyzed.

In total, we recorded the age, sex and clinical status of all the specimens, to be sure there were strong correlations between the infection state and biological data.

Molecular identification

DNA Extraction

Genomic DNA was extracted from the liver tissue samples using the EasyPure® Genomic DNA Kit (Geneaid, Taiwan) according to the instructions. It was lysis of tissue, digestion of protein by Proteinase K, and binding of nucleic acids to silica membranes in the presence of high-salt salts. Purity and concentration of the extracted DNA were measured on a NanoDrop spectrophotometer, and absorbance ratios of 260/280 nm were determined for DNA quality to downstream use.

Polymerase chain reaction

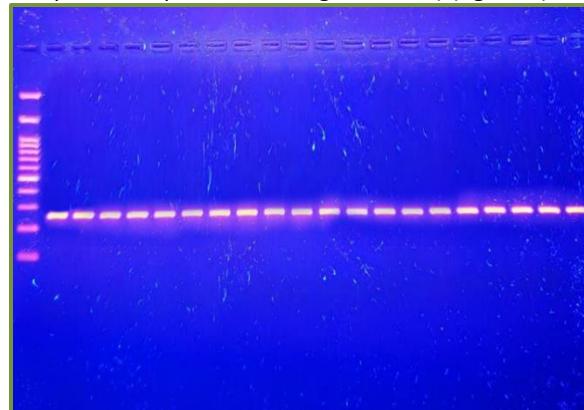
The test included the amplification of the 18S rRNA gene, a well-known molecular marker for *Echinococcus granulosus*, by PCR and specific primers. These primers were curated from reference sequences in GenBank (Forward: GGTTTATTGGATCGTGC; Reverse: CTGTAACAATTATCCAGAGTC). In each 25 μ L PCR reaction, 2 μ L DNA template, 1 μ L of each primer (10 M), 12.5 μ L of AccuPower® PCR PreMix (Bioneer, Korea) and 8.5 μ L of nuclease-free water were used. The PCR conditions were first denaturation at 94°C for 5 minutes, 35 cycles of denaturation at 94°C for 1 minute, annealing at 52°C for 1 min, extension at 72°C for 2 minutes, and extension at 72°C for 10 minutes. Prominent products were represented on a 1.5% agarose gel stained with ethidium bromide and recorded in the ultraviolet light.

Sequencing and phylogenetic analyses

Positive PCR products were cleansed by the Geneaid Gel Extraction Kit and sent for sequencing to Macrogen Inc., South Korea. Those sequences were BLAST'd and compared with reference sequences in the NCBI GenBank database. The phylogenetic analyses included using MEGA software to analyze genetic variation and evolutionary distance between isolates. To validate the evolutionary clusters, neighbor-joining trees were built using bootstrap.

Serological analysis

To assess for biomarkers, IL-4 and IL-10 cytokines were measured with an ELISA kit. Standard curves were created by serial dilutions of standard concentrations and OD was measured at 450 nm by a microplate reader. Concentrations from the samples


were averaged out. The cytokine concentrations were measured.

Statistical analysis

The data were processed using GraphPad Prism software to analyze them statistically. Comparison of cytokine levels between groups was done using one-way ANOVA and post hoc test, where p-value less than 0.05 was considered statistically significant.

Results

This study's molecular and biomarker analyses were informative about the genetic variety of *E. granulosus* and the immune response it causes in sheep and goats. PCR amplification of the 18S rRNA gene confirmed that the parasite is highly prevalent in the 150 liver samples we had tested (100 per cent of liver samples were positive for *E. granulosus*) (figure 1).

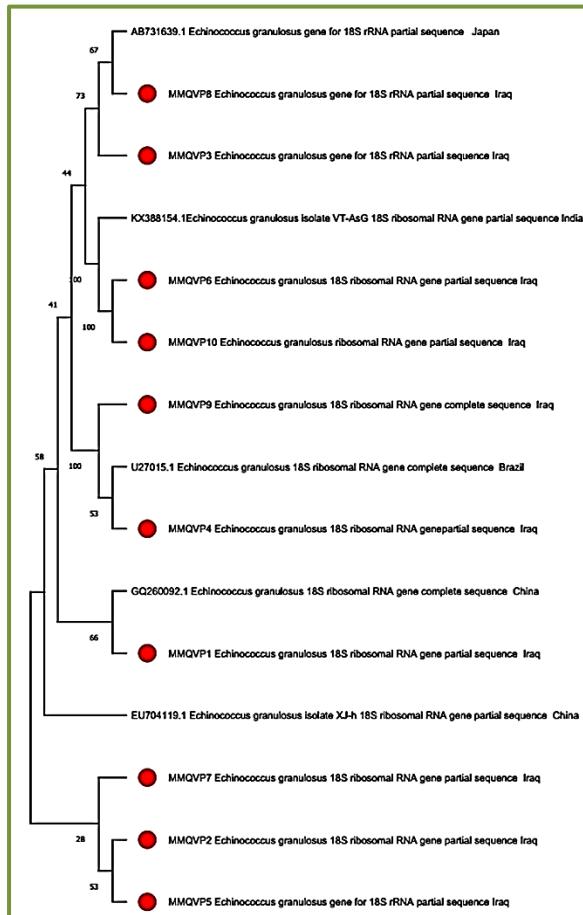


Figure 1: Image of agarose gel electrophoresis of the 18S rRNA gene from *Echinococcus granulosus* isolated from livers of sheep and goats, M: ladder, PCR products at 225bp.

The PCR products (the corresponding expected amplicon size of 225 base pairs) were sequenced, and phylogenetic analysis showed genetic subgroups among local isolates. These isolates were organized into clades, which meant there was genetic diversity between samples. The tree of life showed an overlap between the local isolates and some global genotypes, suggesting regional variation and evolutionary potential of *E. granulosus* in Iraq (Figure 2).

Evaluation of biomarkers using ELISA added yet more information about host immune responses to *E. granulosus* infection. Infected animals had much higher IL-10 concentrations than non-infected controls, with most elevated levels in those with worse infections. This discovery supports IL-10 as an anti-inflammatory cytokine that probably works to

regulate the host immune system to inhibit parasitic overexposure to tissue damage. IL-4, on the other hand, was widely varied between samples. Some patients had high levels of IL-4 – a sign of Th2-mediated immunity, but others had low levels, which suggested that immune regulation could vary with host species, age and health (Figure 3).

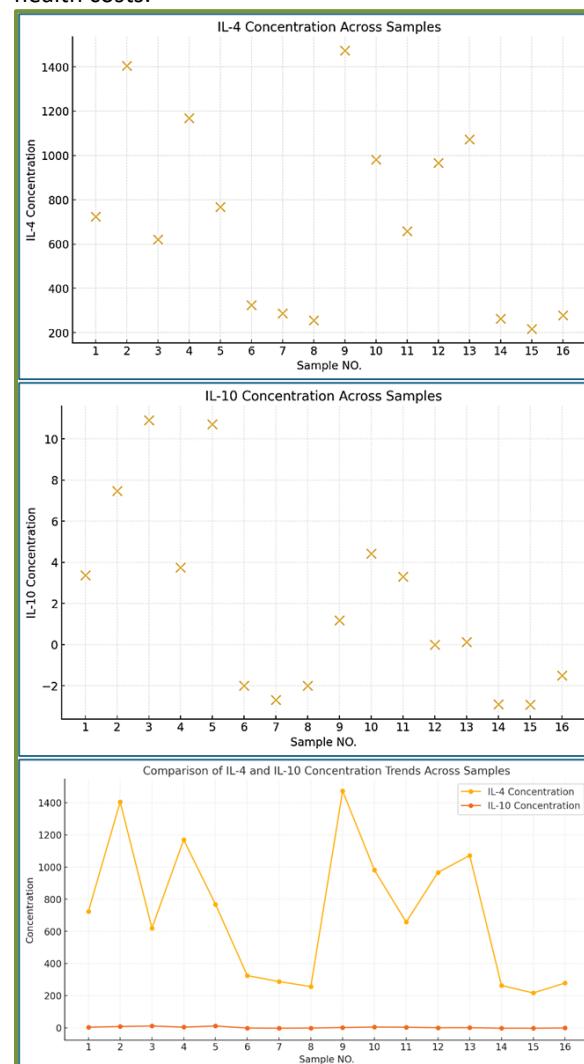


Figure 2: Phylogenetic tree of *Echinococcus granulosus* isolated from livers of sheep and goats.

Discussion

This study on *E. granulosus* in sheep and goats from Al-Qadisiyah Province, Iraq sheds new light on the genetic variation and host immune responses of cystic echinococcosis (CE). With molecular and biomarker studies, this work joins and builds on previous work from around the world with important similarities and differences. The fact that *E. granulosus* was found in this study, detected by PCR in 100% of liver samples, shows how widespread the parasite is across endemic areas. Bosco et al (27) found high CE in sheep (62.9%)

and goats (20.9%) throughout the European Mediterranean region, with organ preference being mainly for the liver in sheep and the lungs in goats. Similarly, Aziz et al. reported an epidemic incidence of hydatid cysts in sheep and goats in Sulaimani Province, Kurdistan Region, Iraq, particularly in goat males (28). These results confirm the parasite's persistence in herds, and its commercial and public health costs.

Figure 3: Biomarker levels in sheep and goats affected by *Echinococcus granulosus*.

Phylogenetic analyses found genetic variation in many Iraqi isolates, with close clustering to genotypes identified elsewhere (Japan, India, and Brazil). Fadakar et al, (29) – G7 genotype in goats in Northeast Iran, and the impact of regional trade and environment on genetic variation. Similarly, Gholami

et al. had reported *Echinococcus ortleppi* (G5) in sheep and goats in Iran, proving yet again CE's gene richness in the Middle East (30). The similarity of Iraqi isolates to Indian (KX388154.1) and Chinese (GQ260092.1) matches that of Moudgil et al who showed large genetic diversity in Indian isolates with widespread hepatic and pulmonary CE (31). These associations point to a regional genetic pool shared by animals moving from place to place.

Cytokine testing showed high IL-10 concentrations in the infected animals, especially the severe cases, which appeared to be an anti-inflammatory response. This observation fits with Antepli Olu et al, (32) who showed that *E. granulosus* infections cause severe tissue damage, and IL-10 counters over inflammation. It's also notable that the differences in IL-4 expression in this experiment suggest multifactorial immune responses, possibly driven by host species and disease. This echoes Joanny et al. (33) in Lebanon who found difference in cyst fertility and organ tropism between sheep and goats.

This genetic variation in Iraqi isolates matches that around the world. In China, Hua et al. (34), identified G1 and G3 genotypes as most common, with regional differences based on environment and host. Similarly, Laatamna et al. (35), found high genetic variation in Algeria, which points to *E. granulosus*' general spread and pragmatism. In contrast, Selcuk et al. (36) in Türkiye describes the evolution of *Echinococcus canadensis* (G6/G7) in goats.

Remarkably, the hepatic involvement was predominant here (which is different from the higher pulmonary involvement reported by Moudgil et al. in India (31). This disparity could be a result of regional differences in parasite tropism or host-pathogen relationships. This high genetic similarity of some Iraqi isolates with other countries and regions suggests the value of transboundary partnerships to address CE. Other controls of CE have been successful. Poggio et al. in Argentina and Chile showed that One Health-immunization of sheep reduced cyst rates by as much as 75% (37). These results show the promise of these kind of integrated interventions in Iraq and adapted to regional socioeconomic and cultural realities (38-55).

Conclusion

This study describes all the infections of *E. granulosus* in Iraq using molecular and biomarker evidence to explain the genetic variability of the parasite and immune response dynamics. The results underscore

the necessity for regional diagnostics and control plans, based on effective models from other endemic areas. Enabled surveillance and research is essential to reducing the burden of CE and increasing veterinary and public health outcomes around the world.

Acknowledgement

No specific fun was available for the current study but was based on self-support.

Conflict of interest

No conflict of interest was declared by the authors.

Funding source

This research had no specific fund; however, it was self-funded by the authors.

References

1. Ohiole JA, Yan HB, Odeniran PO, Li L, Shumuye NA, Qurishi SA, Isaac C, Fu BQ, Jia WZ. *Echinococcus granulosus* sensu lato in animal intermediate hosts: What is with the organ location? *Vet Parasitol.* 2022;304:109695. <https://doi.org/10.1016/j.vetpar.2022.109695>
2. Karshima SN, Ahmed MI, Adamu NB, Magaji AA, Zakariah M, Mohammed K. Africa-wide meta-analysis on the prevalence and distribution of human cystic echinococcosis and canine *Echinococcus granulosus* infections. *Parasites Vectors.* 2022;15(1):357. <https://doi.org/10.1186/s13071-022-05474-6>
3. Manterola C, Totomoch-Serra A, Rojas C, Riffó-Campos ÁL, García-Méndez N. *Echinococcus granulosus* sensu lato genotypes in different hosts worldwide: A systematic review. *Acta Parasitol.* 2021;15:1-25. <https://doi.org/10.1007/s11686-021-00439-8>
4. Hogaia MO, Ciomaga BF, Muntean MM, Muntean AA, Popa MI, Popa GL. Cystic echinococcosis in the early 2020s: A review. *Trop Med Infect Dis.* 2024;9(2):36. <https://doi.org/10.3390/tropicalmed9020036>
5. Vanderslott S. Worm Wars: The Unravelling of the Randomised Control Trial Success Story. *Engaging Sci.*
6. Thompson RCA. Zoonotic helminths-why the challenge remains. *J Helminthol.* 2023. <https://doi.org/10.1017/S0022149X23000020>
7. Laurimäe T, Kinkar L, Moks E, Bagrade G et al. Exploring the genetic diversity of genotypes G8 and G10 of the *Echinococcus canadensis* cluster in Europe based on complete mitochondrial genomes. *Parasitology.* 2023. <https://doi.org/10.1017/S0031182023000331>
8. Santa MA, Rezansoff AM, Chen R, Gillear JS, Musiani M, Ruckstuhl KE, Massolo A. Deep amplicon sequencing highlights low intra-host genetic variability of *Echinococcus multilocularis* and high prevalence of the European-type haplotypes in coyotes and red foxes in Alberta, Canada. *PLoS Negl Trop Dis.* 2021;15(5):e0009428. <https://doi.org/10.1371/journal.pntd.0009428>

9. Pipano E. One Hundred Years of Veterinary Parasitology in the Land of Israel. *Isr J Vet Med*. 2022.

10. Benjamin TM. Distribution and Genetic Diversity of Cystic Echinococcosis in Busia and Bungoma Counties, Western Kenya. 2023.

11. Jamill N, Ahmed H, Afzal MS, Simsek S, Ali A, Arshad M, Yu C, Cao J. Assessment of risk, landscape epidemiology and management strategies to combat alveolar echinococcosis in the rural communities of Hunza, Pakistan. *Front Public Health*. 2022;10:1015475. <https://doi.org/10.3389/fpubh.2022.1015475>

12. Christofi E. Cystic Echinococcosis: An impact assessment of prevention programs in endemic developing countries in Africa, central Asia, and south America. *J Zool Syst Evol Res*. 2022;2022(1):8412718. <https://doi.org/10.1155/2022/8412718>

13. Omadang L, Chamai M, Ejobi F, Erume J, Oba P, Ocaido M. Prevalence of cystic echinococcosis among livestock in pastoral and agro-pastoral areas in Uganda. *Parasitology*. 2024;151(1):68-76. <https://doi.org/10.1017/S0031182023001154>

14. Di X, Li S, Ma B, Di X et al. How climate, landscape, and economic changes increase the exposure of *Echinococcus* spp. *BMC Public Health*. 2022. <https://doi.org/10.21203/rs.3.rs-1724993/v1>

15. Cardoso MJ, Nicolau AI, Borda D, Nielsen L, Maia RL, Møretrø T, Ferreira V, Knøchel S, Langsrød S, Teixeira P. *Salmonella* in eggs: From shopping to consumption-A review providing an evidence-based analysis of risk factors. *Compr Rev Food Sci Food Saf*. 2021;20(3):2716-41. <https://doi.org/10.1111/1541-4337.12753>

16. Gabriël S, Dorny P, Saelens G, Dermauw V. Foodborne parasites and their complex life cycles challenging food safety in different food chains. *Foods*. 2022. <https://doi.org/10.3390/foods12010142>

17. Healy SR, Morgan ER, Prada JM, Betson M. Brain food: rethinking food-borne toxocariasis. *Parasitology*. 2022. <https://doi.org/10.1017/S0031182021001591>

18. Köchle BR, Garijo-Toledo MM, Llobat L. Prevalence of *Toxocara* Eggs in Public Parks in the City of Valencia (Eastern Spain). *Vet*. 2022. <https://doi.org/10.3390/vetsci9050232>

19. Chan JM, Chan H, Flores MJ. Domesticated Cats as a Source of Environmental Contamination with *Toxocara cati* and Other Soil-Transmitted Helminth Eggs in Urban Area, Manila-Philippines. *Insights Public Health J*. 2023. <https://doi.org/10.20884/1.iphj.2023.4.1.9288>

20. Intirach J, Shu C, Lv X, Gao S, Sutthanont N, Chen T, Lv Z. Human parasitic infections of the class Adenophorea: Global epidemiology, pathogenesis, prevention and control. *Infect Dis Poverty*. 2024;13(1):48. <https://doi.org/10.1186/s40249-024-01216-1>

21. Alvi MA, Ali RM, Khan S, Saqib M, Qamar W, Li L, Fu BQ, Yan HB, Jia WZ. Past and present of diagnosis of echinococcosis: A review (1999-2021). *Acta Trop*. 2023;243:106925. <https://doi.org/10.1016/j.actatropica.2023.106925>

22. Tamarozzi F, Silva R, Fittipaldo VA, Buonfrate D, Gottstein B, Siles-Lucas M. Serology for the diagnosis of human hepatic cystic echinococcosis and its relation with cyst staging: A systematic review of the literature with meta-analysis. *PLoS Negl Trop Dis*. 2021;15(4):e0009370. <https://doi.org/10.1371/journal.pntd.0009370>

23. Tamarozzi F, Longoni SS, Vola A, Degani M, Tais S, Rizzi E, Prato M, Scarso S, Silva R, Brunetti E, Bisoffi Z. Evaluation of nine commercial serological tests for the diagnosis of human hepatic cyst echinococcosis and the differential diagnosis with other focal liver lesions: A diagnostic accuracy study. *Diagnostics*. 2021;11(2):167. <https://doi.org/10.3390/diagnostics11020167>

24. Erganis S, Sarzhanov F, Al FD, Çağlar K. Comparison of methods in the serologic diagnosis of cystic echinococcosis. *Acta Parasitol*. 2024. <https://doi.org/10.21203/rs.3.rs-3151934/v1>

25. Peruzzu A, Mastrandrea S, Fancellu A, Bonelli P, Muehlethaler K, Masala G, Santucciu C. Comparison and evaluation of analytic and diagnostic performances of four commercial kits for the detection of antibodies against *Echinococcus granulosus* and *multilocularis* in human sera. *Comp Immunol Microbiol Infect Dis*. 2022;86:101816. <https://doi.org/10.1016/j.cimid.2022.101816>

26. Akil M, Ozkeklikci A, Ozturk EA, Sadiqova A, Altintas N, Karamil S, Yilmaz OS, Unver A, Altintas N. Evaluation of usefulness of three serological tests using native crude antigen in diagnosis of hepatic cystic echinococcosis patients. *Open J Med Microbiol*. 2021;11(2):69-79. <https://doi.org/10.4236/ojmm.2021.112006>

27. Bosco A, Alves LC, Cociancic P, et al. Epidemiology and spatial distribution of *Echinococcus granulosus* in sheep and goats slaughtered in a hyperendemic European Mediterranean area. *Parasit Vectors*. 2021;14(1):421. doi:10.1186/s13071-021-04934-9.

28. Aziz HM, Hama AA, Hama Salih MA. An epidemiological study of hydatid cyst of *Echinococcus granulosus* isolated from sheep, goats and cattle in Sulaimani province, Kurdistan Regional-Iraq. *Ann Parasitol*. 2022;68(2):241-246. doi:10.17420/ap6802.429.

29. Fadakar B, Tabatabaei N, Borji H, Naghibi A. Genotyping of *Echinococcus granulosus* from goats and sheep indicating G7 genotype in goats in the Northeast of Iran. *Vet Parasitol*. 2015;214(1-2):204-207. doi:10.1016/j.vetpar.2015.09.029.

30. Gholami S, Behrestaghi LE, Sarvi S, et al. First description of the emergence of *Echinococcus ortleppi* (G5 genotype) in sheep and goats in Iran. *Parasitol Int*. 2021;83:102316. doi:10.1016/j.parint.2021.102316.

31. Moudgil AD, Moudgil P, Asrani RK, Agnihotri RK. Hydatidosis in slaughtered sheep and goats in India: prevalence, genotypic characterization and pathological studies. *J Helminthol.* 2019;94:e27. doi:10.1017/S0022149X18001219.

32. Antepli Oğlu T, Yapıcı TS, Dincel GC, et al. Assessment of oxidative stress and tissue damage in *Echinococcus granulosus*-naturally infected bovine liver. *Tissue Cell.* 2024;87:102333. doi:10.1016/j.tice.2024.102333.

33. Joanny G, Mehmood N, Dessì G, et al. Cystic echinococcosis in sheep and goats of Lebanon. *Parasitology.* 2021;148(7):871-878. doi:10.1017/S0031182021000494.

34. Hua RQ, Du XD, He X, et al. Genetic diversity of *Echinococcus granulosus* sensu lato in China: Epidemiological studies and systematic review. *Transbound Emerg Dis.* 2022;69(5):e1382-e1392. doi:10.1111/tbed.14469.

35. Laatamna AE, Ebi D, Brahim K, et al. Frequency and genetic diversity of *Echinococcus granulosus* sensu stricto in sheep and cattle from the steppe region of Djelfa, Algeria. *Parasitol Res.* 2019;118(1):89-96. doi:10.1007/s00436-018-6118-x.

36. Selcuk MA, Aslan Celik B, Celik F, et al. A pilot study on the epidemiology, diagnosis and characterization of *Echinococcus granulosus* sensu lato in sheep, goats and dogs in Siirt province of Türkiye. *Vet Parasitol.* 2024;332:110320. doi:10.1016/j.vetpar.2024.110320.

37. Poggio TV, Chacon T, Larrieu E. Successful control of echinococcosis in Argentina and Chile through a One Health approach, including vaccination of the sheep intermediate host. *Parasitology.* 2024;1-5. doi:10.1017/S0031182024000519.

38. Abdulsada AK, Al-Fatlawi MA. Microscopical and phylogenetic identification of Giardia lamblia from fecal samples of chickens in Baghdad governorate, Iraq. *Iraqi J Vet Sci.* 2024; 38(Supplement I-IV): 1-5. doi: 10.33899/ijvs.2024.146134.3418

39. Al-Kim EN, Al-Fatlawi MA. Microscopic and molecular detection of Cephalopina titillator in camels in Al-Diwaniyah province, Iraq. *Iraqi J Vet Sci.* 2024; 38(Supplement I-IV): 35-41. doi: 10.33899/ijvs.2024.146135.3419

40. Abed AN, Al-Fatlawi MA. Molecular detection of gene encodes a β -tubulin protein in *Haemonchus contortus* in sheep in Al-Qadisiyah province, Iraq. *Iraqi J Vet Sci.* 2024; 38(3): 671-675. doi: 10.33899/ijvs.2024.148369.3579

41. Taha AN, Ismail HK. The amelioration of vitamin E on histological changes of rabbit's brain treated with zinc oxide nanoparticles. *Iraqi J Vet Sci.* 2023;37(1):95-104. DOI: 33899/IJVS.2022.133599.2265

42. Taha AN, Ismail HK. The impact of nano zinc oxide particles on the histology of the male reproductive system of adult male rabbits. *Iraqi J Vet Sci.* 2023;37(1):105-113. DOI: 33899/IJVS.2022.133632.2270

43. Al-Fahady MQ, Hameed HM. Bioceutical role of nano and organic selenium on certain reproductive value of laying hen during force molting. *Iraqi J Vet Sci.* 2023;37(2):325-31. DOI: 33899/IJVS.2022.134401.2364

44. Jasim JY, Al-Taee SK. Evaluation of the role of green synthesis silver nanoparticles as adsorbents and protective agents for broilers tissue treated with aflatoxin. *Iraqi J Vet Sci.* 2023;37(3):675-681. DOI: 33899/IJVS.2023.136771.2614

45. Ghazi AM, Al-Bayati AMA, Janabi AHD. Metabolomics-detected alterations generated by phytosomal propolis and phytosomal Lycopene in male rats with induced benign prostatic hyperplasia. *Iraqi J Vet Sci.* 2024; 38(Supplement I-IV): 7-15. DOI: 10.33899/ijvs.2024.147764.3531

46. Klaif SF, Abid AJ, Al-Fatlawi MA and Ali MJ. Major-surface-protein-4-gene-based detection of *Anaplasma marginale* isolated from sheep in Al-Diwaniyah province, Iraq. *Iraqi J Vet Sci.* 2022, 36(1):85-88. DOI: 10.33899/ijvs.2021.129230.1635

47. Ali MJ, Atiyah WRR, Al-Fatlawi MAA And Khlaif SF. Genotypic analysis of ticks species infesting cattle in Al-Diwaniyah abattoir. *Iraqi J of Vet Sci.* 2021, 35(4):673-677. DOI: 10.33899/ijvs.2020.127772.1525

48. Alfatlawi MA, Jasim AA, Jarad NE, Khlaif SF. Clinical and molecular identification of ruling *Theileria annulata* strains in cattle calves in Al-Diwaniyah province, Iraq. *Iraqi J Vet of Sci.* 2021; 35(1):115-119. DOI: 10.33899/ijvs.2020.126429.1319

49. Ali MJ, Karawan AC, Al-Fetly DR, ALfatlawi MA. Synergizing the deltamethrin larvical activity against *Aedes albopictus* larvae using cinnamaldehyde in Diwaniyah, Iraq. *Iraqi J Vet Sci.* 2020;34(2):317- 320. DOI: 10.33899/ijvs.2019.126026.1212

50. Anisimova E I. Unveiling the Enigma: An Overview of Zoonotic Protozoan Parasites. *Al-Qadisiyah Journal of Veterinary Medicine Sciences.* 2024; 23(1):1-9.

51. Buga SV. Wildlife and parasitism: A review. . *Al-Qadisiyah Journal of Veterinary Medicine Sciences.* 2024; 23(1):19-25.

52. Alfatlawi MAA, kadhim IJ. Prevalence of *Fasciola* spp. in cattle in Al-Diwaniyah province. *Al-Qadisiyah Journal of Veterinary Medicine Sciences.* 2024; 23(2): 7-13. DOI: 10.29079/qjvms.2024.185608

53. Ahmed HS. Sheep-human genetic similarities of *Entamoeba histolytica* isolates recovered from farms and human hospitals in Al-Diwaniyah Province, Iraq. *Al-Qadisiyah Journal of Veterinary Medicine Sciences.* 2023; 22(1): 17-22. DOI: 10.29079/qjvms.2023.183380

54. Mohammed AK. *Mycoplasma gallisepticum* Infection in Poultry: Article Review. *Al-Qadisiyah Journal of Veterinary Medicine Sciences.* 2023; 22(2): 20-24. DOI: 10.29079/qjvms.2023.183392

55. Alkardhi IKA, Elloumi N, Masmoudi H, Muhammed HA, Sellami H. Immunological assay and histopathological study of *Toxoplasma gondii* in Experimental male rats. *Al-Qadisiyah Journal of Veterinary Medicine Sciences.* 2023; 22(2): 25-35. DOI: 10.29079/qjvms.2023.183393

